Hwang HW, Mendell JT: MicroRNAs in cell proliferation, cell death, and tumorigenesis. Brit J Cancer. 2006, 94 (6): 776-780. 10.1038/sj.bjc.6603023.
Article
CAS
PubMed Central
PubMed
Google Scholar
Song L, Tuan RS: MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today. 2006, 78 (2): 140-149. 10.1002/bdrc.20070.
Article
CAS
PubMed
Google Scholar
Zhou Q, Li MZ, Wang XY, Li QZ, Wang T, Zhu Q, Zhou XC, Wang X, Gao XL, Li XW: Immune-related MicroRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012, 8 (1): 118-123. 10.7150/ijbs.8.118.
Article
CAS
PubMed Central
PubMed
Google Scholar
Michael A, Bajracharya SD, Yuen PST, Zhou H, Star RA, Illei GG, Alevizos I: Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010, 16 (1): 34-38. 10.1111/j.1601-0825.2009.01604.x.
Article
CAS
PubMed Central
PubMed
Google Scholar
Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C: Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005, 17 (7): 879-887. 10.1093/intimm/dxh267.
Article
CAS
PubMed
Google Scholar
Pisitkun T, Shen RF, Knepper MA: Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004, 101 (36): 13368-13373. 10.1073/pnas.0403453101.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kosaka N, Yoshioka Y, Hagiwara K, Tominaga N, Ochiya T: Functional analysis of exosomal microRNA in cell-cell communication research. Methods Mol Biol. 2013, 1024: 1-10. 10.1007/978-1-62703-453-1_1.
Article
CAS
PubMed
Google Scholar
Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L: Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010, 78 (9): 838-848. 10.1038/ki.2010.278.
Article
CAS
PubMed
Google Scholar
Ge Q, Zhou Y, Lu J, Bai Y, Xie X, Lu Z: MiRNA in plasma exosome is stable under different storage conditions. Molecules. 2014, 19 (2): 1568-1575. 10.3390/molecules19021568.
Article
PubMed
Google Scholar
Munch EM, Harris RA, Mohammad M, Benham AL, Pejerrey SM, Showalter L, Hu M, Shope CD, Maningat PD, Gunaratne PH, Haymond M, Aagaard K: Transcriptome profiling of microRNA by next-Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS ONE. 2013, 8 (2): e50564-10.1371/journal.pone.0050564.
Article
CAS
PubMed Central
PubMed
Google Scholar
Donovan SM, Odle J: Growth-factors in milk as mediators of infant development. Annu Rev Nutr. 1994, 14: 147-167. 10.1146/annurev.nu.14.070194.001051.
Article
CAS
PubMed
Google Scholar
Nicholas KR: Asynchronous dual lactation in a marsupial, the tammar wallaby (Macropus-Eugenii). Biochem Biophys Res Commun. 1988, 154 (2): 529-536. 10.1016/0006-291X(88)90172-6.
Article
CAS
PubMed
Google Scholar
Kosaka N, Izumi H, Sekine K, Ochiya T: microRNA as a new immune-regulatory agent in breast milk. Silence. 2010, 1 (1): 7-10.1186/1758-907X-1-7.
Article
PubMed Central
PubMed
Google Scholar
Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N: Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun. 2010, 396 (2): 528-533. 10.1016/j.bbrc.2010.04.135.
Article
CAS
PubMed
Google Scholar
Chen T, Xi Q-Y, Ye R-S, Cheng X, Qi Q-E, Wang S-B, Shu G, Wang L-N, Zhu X-T, Jiang Q-Y, Zhang Y-L: Exploration of microRNAs in porcine milk exosomes. Bmc Genomics. 2014, 15 (1): 100-10.1186/1471-2164-15-100.
Article
PubMed Central
PubMed
Google Scholar
Ji ZB, Wang GZ, Xie ZJ, Zhang CL, Wang JM: Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Mol Biol Rep. 2012, 39 (10): 9361-9371. 10.1007/s11033-012-1779-5.
Article
CAS
PubMed
Google Scholar
Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH: MicroRNA expression in zebrafish embryonic development. Science. 2005, 309 (5732): 310-311. 10.1126/science.1114519.
Article
CAS
PubMed
Google Scholar
Laurent LC: MicroRNAs in embryonic stem cells and early embryonic development. J Cell Mol Med. 2008, 12 (6A): 2181-2188. 10.1111/j.1582-4934.2008.00513.x.
Article
CAS
PubMed Central
PubMed
Google Scholar
Trott JF, Simpson KJ, Moyle RL, Hearn CM, Shaw G, Nicholas KR, Renfree MB: Maternal regulation of milk composition, milk production, and pouch young development during lactation in the tammar wallaby (Macropus eugenii). Biol Reprod. 2003, 68 (3): 929-936.
Article
CAS
PubMed
Google Scholar
Tyndale-Biscoe CH, Janssens PA: The Developing Marsupial: Models for Biomedical Research. 1988, Berlin: Springer
Book
Google Scholar
Jenness R: Lactational performance of various mammalian-species. J Dairy Sci. 1986, 69 (3): 869-885. 10.3168/jds.S0022-0302(86)80478-7.
Article
CAS
PubMed
Google Scholar
Renfree MB: Life in the pouch: womb with a view. Reprod Fert Develop. 2006, 18 (7): 721-734. 10.1071/RD06072.
Article
Google Scholar
Brennan AJ, Sharp JA, Digby MR, Nicholas KR: The tammar wallaby: a model to examine endocrine and local control of lactation. IUBMB Life. 2007, 59 (3): 146-150. 10.1080/15216540701335724.
Article
CAS
PubMed
Google Scholar
Deane EM, Cooper DW: Immunology of pouch young marsupials. I. Levels of immunoglobulin transferrin and albumin in the blood and milk of euros and wallaroos (hill kangaroos:, marsupialia). Dev Comp Immunol. 1984, 8 (4): 863-876. 10.1016/0145-305X(84)90069-7.
Article
CAS
PubMed
Google Scholar
Tizard I: The protective properties of milk and colostrum in non-human species. Adv Nutr Res. 2001, 10: 139-166.
CAS
PubMed
Google Scholar
Merchant JC, Sharman GB: Observations on the attatchment of marsupial pouch young to the teats and on the rearing of pouch young by foster-mothers of the same or different species. Aust J Zool. 1966, 14 (4): 593-609. 10.1071/ZO9660593.
Article
Google Scholar
Green B, Krause WJ, Newgrain K: Milk composition in the North American opossum (Didelphis virginiana). Comp Biochem Physiol B Biochem Mol Biol. 1996, 113 (3): 619-623. 10.1016/0305-0491(95)02034-9.
Article
CAS
PubMed
Google Scholar
Bird PH, Hendry KA, Shaw DC, Wilde CJ, Nicholas KR: Progressive changes in milk protein gene expression and prolactin binding during lactation in the tammar wallaby (Macropus eugenii). J Mol Endocrinol. 1994, 13 (2): 117-125. 10.1677/jme.0.0130117.
Article
CAS
PubMed
Google Scholar
Kevin RN: Asynchronous dual lactation in a marsupial, the tammar wallaby (Macropus eugenii). Biochem Bioph Res Co. 1988, 154 (2): 529-536. 10.1016/0006-291X(88)90172-6.
Article
Google Scholar
Ward KL, Renfree MB: Effects of progesterone on parturition in the tammar. Macropus eugenii J Reprod Fertil. 1984, 72 (1): 21-28. 10.1530/jrf.0.0720021.
Article
CAS
Google Scholar
Messer M, Nicholas KR: Biosynthesis of marsupial milk oligosaccharides - characterization and developmental-changes of 2 galactosyltransferases in lactating mammary-glands of the tammar wallaby. Macropus-Eugenii Biochim Biophys Acta. 1991, 1077 (1): 79-85. 10.1016/0167-4838(91)90528-8.
Article
CAS
Google Scholar
Nicholas K, Simpson K, Wilson M, Trott J, Shaw D: The Tammar Wallaby: A Model to Study Putative Autocrine-Induced Changes in Milk Composition. J Mammary Gland Biol Neoplasia. 1997, 2 (3): 299-310. 10.1023/A:1026392623090.
Article
CAS
PubMed
Google Scholar
Green B, Griffiths M, Leckie RM: Qualitative and quantitative changes in milk fat during lactation in the tammar wallaby (Macropus eugenii). Aust J Biol Sci. 1983, 36 (5–6): 455-461.
CAS
PubMed
Google Scholar
Nicholas K, Sharp J, Watt A, Wanyonyi S, Crowley T, Gillespie M, Lefevre C: The tammar wallaby: a model system to examine domain-specific delivery of milk protein bioactives. Semin Cell Dev Biol. 2012, 23 (5): 547-556. 10.1016/j.semcdb.2012.03.016.
Article
CAS
PubMed
Google Scholar
Sharp JA, Lefèvre C, Nicholas KR: Molecular evolution of monotreme and marsupial whey acidic protein genes. Evol Dev. 2007, 9 (4): 378-392. 10.1111/j.1525-142X.2007.00175.x.
Article
CAS
PubMed
Google Scholar
Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X, Zhou Q, Chen L, Lang Q, He Z, Chen XH, Gong JJ, Gao XL, Li XW, Lv XB: Lactation-related microRNA expression profiles of porcine breast milk exosomes. Plos One. 2012, 7 (8): e43691-10.1371/journal.pone.0043691.
Article
CAS
PubMed Central
PubMed
Google Scholar
Greenhill C: Nutrition: drinking cow’s milk alters vitamin D and iron stores in young children. Nat Rev Endocrinol. 2013, 9 (3): 126-
Article
PubMed
Google Scholar
Messer M, Kerry KR: Milk carbohydrates of the echidna and the platypus. Science. 1973, 180 (4082): 201-203. 10.1126/science.180.4082.201.
Article
CAS
PubMed
Google Scholar
Ballard O, Morrow AL: Human milk composition nutrients and bioactive factors. Pediatr Clin N Am. 2013, 60 (1): 49-+-10.1016/j.pcl.2012.10.002.
Article
Google Scholar
Wada Y, Lönnerdal B: Bioactive peptides derived from human milk proteins — mechanisms of action. J Nutr Biochem. 2014, 25 (5): 503-514. 10.1016/j.jnutbio.2013.10.012.
Article
CAS
PubMed
Google Scholar
Kwek JH, Iongh RD, Digby MR, Renfree MB, Nicholas KR, Familari M: Cross-fostering of the tammar wallaby (Macropus eugenii) pouch young accelerates fore-stomach maturation. Mech Dev. 2009, 126 (5–6): 449-463.
Article
CAS
PubMed
Google Scholar
Knight CH, Peaker M: Development of the mammary gland. J Reprod Fertil. 1982, 65 (2): 521-536. 10.1530/jrf.0.0650521.
Article
CAS
PubMed
Google Scholar
Macias H, Hinck L: Mammary gland development. Wiley Interdiscip Rev Dev Biol. 2012, 1 (4): 533-557. 10.1002/wdev.35.
Article
CAS
PubMed Central
PubMed
Google Scholar
Findlay L: The mammary-glands of the tammar wallaby (macropus-eugenii) during pregnancy and lactation. J Reprod Fertil. 1982, 65 (1): 59-10.1530/jrf.0.0650059.
Article
CAS
PubMed
Google Scholar
Ucar A, Vafaizadeh V, Jarry H, Fiedler J, Klemmt PAB, Thum T, Groner B, Chowdhury K: miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nat Genet. 2010, 42 (12): 1101-U1100. 10.1038/ng.709.
Article
CAS
PubMed
Google Scholar
Li Z, Liu HY, Jin XL, Lo LJ, Liu JX: Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics. 2012, 13: 731-10.1186/1471-2164-13-731.
Article
CAS
PubMed Central
PubMed
Google Scholar
Singh R, Mo YY: Role of microRNAs in breast cancer. Cancer Biol Ther. 2013, 14 (3): 201-212. 10.4161/cbt.23296.
Article
CAS
PubMed Central
PubMed
Google Scholar
Galio L, Droineau S, Yeboah P, Boudiaf H, Bouet S, Truchet S, Devinoy E: MicroRNA in the ovine mammary gland during early pregnancy: spatial and temporal expression of miR-21, miR-205, and miR-200. Physiol Genomics. 2013, 45 (4): 151-161. 10.1152/physiolgenomics.00091.2012.
Article
CAS
PubMed
Google Scholar
Nagaoka K, Zhang HL, Watanabe G, Taya K: Epithelial cell differentiation regulated by MicroRNA-200a in mammary glands. Plos One. 2013, 8 (6): e65127-10.1371/journal.pone.0065127.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kumar A, Wong AKL, Tizard ML, Moore RJ, Lefèvre C: miRNA_targets: a database for miRNA target predictions in coding and non-coding regions of mRNAs. Genomics. 2012, 100 (6): 352-356. 10.1016/j.ygeno.2012.08.006.
Article
CAS
PubMed
Google Scholar
Gailhouste L, Gomez-Santos L, Hagiwara K, Hatada I, Kitagawa N, Kawaharada K, Thirion M, Kosaka N, Takahashi R, Shibata T, Miyajima A, Ochiya T: miR-148a plays a pivotal role in the liver by promoting the hepatospecific phenotype and suppressing the invasiveness of transformed cells. Hepatology. 2013, 58 (3): 1153-1165. 10.1002/hep.26422.
Article
CAS
PubMed
Google Scholar
Chen Y, Song YX, Wang ZN: The MicroRNA-148/152 family: multi-faceted players. Mol Cancer. 2013, 12 (1): 43-10.1186/1476-4598-12-43.
Article
PubMed Central
PubMed
Google Scholar
Yang J, Kennelly JJ, Baracos VE: The activity of transcription factor Stat5 responds to prolactin, growth hormone, and IGF-I in rat and bovine mammary explant culture. J Anim Sci. 2000, 78 (12): 3114-3125.
CAS
PubMed
Google Scholar
Liu XW, Robinson GW, Wagner KU, Garrett L, WynshawBoris A, Hennighausen L: Stat5a is mandatory for adult mammary gland development and lactogenesis. Gene Dev. 1997, 11 (2): 179-186. 10.1101/gad.11.2.179.
Article
CAS
PubMed
Google Scholar
Labbaye C, Testa U: The emerging role of MIR-146A in the control of hematopoiesis, immune function and cancer. J Hematol Oncol. 2012, 5: 13-10.1186/1756-8722-5-13.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M: MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res. 2008, 18 (5): 549-557. 10.1038/cr.2008.45.
Article
CAS
PubMed
Google Scholar
Lin SM, Li HM, Mu HP, Luo W, Li Y, Jia XZ, Wang SB, Jia XL, Nie QH, Li YG, Zhang XQ: Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens. BMC Genomics. 2012, 13: 306-10.1186/1471-2164-13-306.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang M, Moisa S, Khan MJ, Wang J, Bu D, Loor JJ: MicroRNA expression patterns in the bovine mammary gland are affected by stage of lactation. J Dairy Sci. 2012, 95 (11): 6529-6535. 10.3168/jds.2012-5748.
Article
CAS
PubMed
Google Scholar
Henao-Mejia J, Williams A, Goff Loyal A, Staron M, Licona-Limón P, Kaech Susan M, Nakayama M, Rinn John L, Flavell Richard A: The MicroRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity. 2013, 38 (5): 984-997. 10.1016/j.immuni.2013.02.021.
Article
CAS
PubMed Central
PubMed
Google Scholar
Neel JC, Lebrun JJ: Activin and TGFbeta regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cellular signalling. 2013, 25 (7): 1556-1566. 10.1016/j.cellsig.2013.03.013.
Article
CAS
PubMed
Google Scholar
Guo SL, Peng Z, Yang X, Fan KJ, Ye H, Li ZH, Wang Y, Xu XL, Li J, Wang YL, Teng Y, Yang X: miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int J Biol Sci. 2011, 7 (5): 567-574.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li P, Peng J, Hu J, Xu Z, Xie W, Yuan L: Localized expression pattern of miR-184 in Drosophila. Mol Biol Rep. 2011, 38 (1): 355-358. 10.1007/s11033-010-0115-1.
Article
CAS
PubMed
Google Scholar
Liu CM, Teng ZQ, Santistevan NJ, Szulwach KE, Guo WX, Jin P, Zhao XY: Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell. 2010, 6 (5): 433-444. 10.1016/j.stem.2010.02.017.
Article
CAS
PubMed Central
PubMed
Google Scholar
McKiernan RC, Jimenez-Mateos EM, Sano T, Bray I, Stallings RL, Simon RP, Henshall DC: Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death. Exp Neurol. 2012, 237 (2): 346-354. 10.1016/j.expneurol.2012.06.029.
Article
CAS
PubMed Central
PubMed
Google Scholar
Großhans H, Johnson T, Reinert KL, Gerstein M, Slack FJ: The temporal patterning MicroRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell. 2005, 8 (3): 321-330. 10.1016/j.devcel.2004.12.019.
Article
PubMed
Google Scholar
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000, 403 (6772): 901-906. 10.1038/35002607.
Article
CAS
PubMed
Google Scholar
Filipowicz W, Großhans H: The Liver-Specific MicroRNA miR-122: Biology and Therapeutic Potential. Epigenetics and Disease. Edited by: Gasser SM, Li E. 2011, Picassoplatz 4, 4052 Basel, Switzerland: Springer Basel AG, 67: 221-238. http://www.springer.com/gp/about-springer/company-information/locations/springer-basel-ag,
Chapter
Google Scholar
Xu H, He J-H, Xiao Z-D, Zhang Q-Q, Chen Y-Q, Zhou H, Qu L-H: Liver-enriched transcription factors regulate MicroRNA-122 that targets CUTL1 during liver development. Hepatology. 2010, 52 (4): 1431-1442. 10.1002/hep.23818.
Article
CAS
PubMed
Google Scholar
Wu X, Wu SQ, Tong L, Luan TA, Lin LX, Lu SL, Zhao WR, Ma QQ, Liu HM, Zhong ZH: miR-122 affects the viability and apoptosis of hepatocellular carcinoma cells. Scand J Gastroentero. 2009, 44 (11): 1332-1339. 10.3109/00365520903215305.
Article
CAS
Google Scholar
Jovicic A, Zaldivar Jolissaint JF, Moser R, Silva Santos MF, Luthi-Carter R: MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. Plos One. 2013, 8 (1): e54222-10.1371/journal.pone.0054222.
Article
CAS
PubMed Central
PubMed
Google Scholar
Choong ML, Yang HH, McNiece I: MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol. 2007, 35 (4): 551-564. 10.1016/j.exphem.2006.12.002.
Article
CAS
PubMed
Google Scholar
Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RHA: Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. Plos Biol. 2007, 5 (8): 1738-1749.
Article
CAS
Google Scholar
Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M: miR-375 maintains normal pancreatic α- and β-cell mass. Proc Natl Acad Sci. 2009, 106 (14): 5813-5818. 10.1073/pnas.0810550106.
Article
CAS
PubMed Central
PubMed
Google Scholar
Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD: The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. Plos One. 2009, 4 (4): e5033-10.1371/journal.pone.0005033.
Article
PubMed Central
PubMed
Google Scholar
Conte I, Carrella S, Avellino R, Karali M, Marco-Ferreres R, Bovolenta P, Banfi S: miR-204 is required for lens and retinal development via Meis2 targeting. Proc Natl Acad Sci. 2010, 107 (35): 15491-15496. 10.1073/pnas.0914785107.
Article
CAS
PubMed Central
PubMed
Google Scholar
Avellino R, Carrella S, Pirozzi M, Risolino M, Salierno FG, Franco P, Stoppelli P, Verde P, Banfi S, Conte I: miR-204 targeting of Ankrd13A controls both mesenchymal neural crest and lens cell migration. Plos One. 2013, 8 (4): e61099-10.1371/journal.pone.0061099.
Article
CAS
PubMed Central
PubMed
Google Scholar
Agrawal R, Tran U, Wessely O: The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development. 2009, 136 (23): 3927-3936. 10.1242/dev.037432.
Article
CAS
PubMed Central
PubMed
Google Scholar
Büssing I, Slack FJ, Großhans H: let-7 microRNAs in development, stem cells and cancer. Trends Mol Med. 2008, 14 (9): 400-409. 10.1016/j.molmed.2008.07.001.
Article
PubMed
Google Scholar
Biton M, Levin A, Slyper M, Alkalay I, Horwitz E, Mor H, Kredo-Russo S, Avnit-Sagi T, Cojocaru G, Zreik F, Bentwich Z, Poy MN, Artis D, Walker MD, Hornstein E, Pikarsky E, Ben-Neriah Y: Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat Immunol. 2011, 12 (3): 239-U275. 10.1038/ni.1994.
Article
CAS
PubMed
Google Scholar
Mark RF, Marotte LR: Australian marsupials as models for the developing mammalian visual system. Trends Neurosci. 1992, 15 (2): 51-57. 10.1016/0166-2236(92)90026-5.
Article
CAS
PubMed
Google Scholar
Jellinger KA: The neurobiology of Australian marsupials: brain evolution in the other mammalian radiation. Eur J Neurol. 2011, 18 (5): e52-e52. 10.1111/j.1468-1331.2010.03285.x.
Article
Google Scholar
Saunders N: Marsupials as Models for Studies of Development and Regeneration of the Central Nervous System. Marsupial Biology: Recent Research, new Perspectives. 1997, LA SNH: University of New South Wales Press Ltd, 380-405.
Google Scholar
Wilkes G, Janssens P: Development of urine concentrating ability in pouch young of a marsupial, the tammar wallaby (Macropus eugenii). J Comp Physiol B. 1986, 156 (4): 573-582. 10.1007/BF00691044.
Article
CAS
Google Scholar
Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EPA, Scheynius A, Gabrielsson S: Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007, 179 (3): 1969-1978. 10.4049/jimmunol.179.3.1969.
Article
CAS
PubMed
Google Scholar
Lasser C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT, Bossios A, Sjostrand M, Gabrielsson S, Lotvall J, Valadi H: Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011, 9: 9-10.1186/1479-5876-9-9.
Article
PubMed Central
PubMed
Google Scholar
Creemers EE, Tijsen AJ, Pinto YM: Circulating MicroRNAs: novel biomarkers and extracellular communicators in cardiovascular disease?. Circ Res. 2012, 110 (3): 483-495. 10.1161/CIRCRESAHA.111.247452.
Article
CAS
PubMed
Google Scholar
Old JM, Deane EM: The lymphoid and immunohaematopoietic tissues of the embryonic brushtail possum (Trichosurus vulpecula). Anat Embryol. 2003, 206 (3): 193-197.
CAS
PubMed
Google Scholar
Westrom BR, Svendsen J, Ohlsson BG, Tagesson C, Karlsson BW: Intestinal transmission of macromolecules (BSA and FITC-labelled dextrans) in the neonatal pig. Influence of age of piglet and molecular weight of markers. Biol Neonate. 1984, 46 (1): 20-26. 10.1159/000242028.
Article
CAS
PubMed
Google Scholar
Teichberg S, Wapnir RA, Moyse J, Lifshitz F: Development of the neonatal rat small intestinal barrier to nonspecific macromolecular absorption.2. Role of dietary corticosterone. Pediatr Res. 1992, 32 (1): 50-57. 10.1203/00006450-199207000-00010.
Article
CAS
PubMed
Google Scholar
Lecce JG, Broughto CW: Cessation of uptake of macromolecules by neonatal guinea-pig, hamster and rabbit intestinal epithelium (Closure) and transport into blood. J Nutr. 1973, 103 (5): 744-750.
CAS
PubMed
Google Scholar
van Niel G, Heyman M: II. Intestinal epithelial cell exosomes: perspectives on their structure and function. Am J Physiol Gastrointest Liver Physiol. 2002, 283 (2): G251-G255.
Article
CAS
PubMed
Google Scholar
Hu G, Drescher KM, Chen X: Exosomal miRNAs: biological properties and therapeutic potential. Front Genet. 2012, 3: 56-
CAS
PubMed Central
PubMed
Google Scholar
Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H: Birth and expression evolution of mammalian microRNA genes. Genome Res. 2013, 23 (1): 34-45. 10.1101/gr.140269.112.
Article
CAS
PubMed Central
PubMed
Google Scholar
Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A: NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res. 2011, 39 (Database issue): D1005-D1010.
Article
CAS
PubMed Central
PubMed
Google Scholar
Amit Kumar LB, Kuruppath S, Ngo KP, Nicholas KR, Lefèvre C: The Emerging Role of Micro-RNAs in the Lactation Process. Lactation: Natural Processes, Physiological Responses and Role in Maternity. Edited by: Gutierrez LMRCDCO. 2012, [Hauppauge] New York: Nova Biomedical: Nova Science Publishers Inc
Google Scholar
Varkonyi-Gasic E, Wu RM, Wood M, Walton EF, Hellens RP: Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 2007, 3: 12-10.1186/1746-4811-3-12.
Article
PubMed Central
PubMed
Google Scholar