Land MF, Fernald RD: The evolution of eyes. Annu Rev Neurosci. 1992, 15: 1-29. 10.1146/annurev.ne.15.030192.000245.
CAS
PubMed
Google Scholar
Nilsson D-E: Eye evolution: a question of genetic promiscuity. Curr Opin Neurobiol. 2004, 14: 407-414. 10.1016/j.conb.2004.07.004.
CAS
PubMed
Google Scholar
Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD: The genome of the sea urchin Strongylocentrotus purpuratus. Science. 2006, 314: 941-952.
PubMed
Google Scholar
Raible F, Tessmar-Raible K, Arboleda E, Kaller T, Bork P, Arendt D, Arnone MI: Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev Biol. 2006, 300: 461-475. 10.1016/j.ydbio.2006.08.070.
CAS
PubMed
Google Scholar
Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, Liang S, Mu X, Agca C, Klein WH: A genomic view of the sea urchin nervous system. Dev Biol. 2006, 300: 434-460. 10.1016/j.ydbio.2006.08.007.
CAS
PubMed Central
PubMed
Google Scholar
Lesser MP, Carleton KL, Böttger SA, Barry TM, Walker CW: Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6. P Roy Soc B-Biol Sci. 2011, 278: 3371-3379. 10.1098/rspb.2011.0336.
CAS
Google Scholar
Ooka S, Katow T, Yaguchi S, Yaguchi J, Katow H: Spatiotemporal expression pattern of an encephalopsin orthologue of the sea urchin Hemicentrotus pulcherrimus during early development, and its potential role in larval vertical migration. Develop Growth Differ. 2010, 52: 195-207. 10.1111/j.1440-169X.2009.01154.x.
CAS
Google Scholar
Agca C, Elhajj MC, Klein WH, Venuti JM: Neurosensory and neuromuscular organization in tube feet of the sea urchin Strongylocentrotus purpuratus. J Comp Neurol. 2011, 519: 3566-3579. 10.1002/cne.22724.
PubMed
Google Scholar
Ullrich-Lüter EM, Dupont S, Arboleda E, Hausen H, Arnone MI: Unique system of photoreceptors in sea urchin tube feet. Proc Natl Acad Sci U S A. 2011, 108: 8367-8372. 10.1073/pnas.1018495108.
PubMed Central
PubMed
Google Scholar
Ullrich-Lüter EM, D’Aniello S, Arnone MI: C-opsin expressing photoreceptors in echinoderms. Am Zool. 2013, 53: 27-38.
Google Scholar
Land MF, Nilsson D-E: Animals Eyes. 2002
Google Scholar
Hendler G: An echinoderm’s Eye View of Photoreception and Vision. 2006, 339-
Google Scholar
Oviatt CA: Light influenced movement of the starfish AsterIas forbesi (Desor). Behaviour. 1969, 33: 1-2. 10.1163/156853969X00297.
Google Scholar
Millott N: The photosensitivity of echinoids. Adv Mar Biol. 1976, 13: 1-52.
Google Scholar
Yerramilli D, Johnsen S: Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea). J Exp Biol. 2010, 213: 249-255. 10.1242/jeb.033159.
CAS
PubMed
Google Scholar
Yoshida M, Ohtsuki H: Compound ocellus of a starfish: its function. Science. 1966, 153: 197-198. 10.1126/science.153.3732.197.
CAS
PubMed
Google Scholar
Hendler G, Byrne M: Fine structure of the dorsal arm plate of Ophiocoma wendti: evidence for a photoreceptor system (Echinodermata, Ophiuroidea). Zoomorphology. 1987, 107: 261-272. 10.1007/BF00312172.
Google Scholar
Garm A, Nilsson D-E: Visual navigation in starfish: first evidence for the use of vision and eyes in starfish. Proc R Soc B Biol Sci. 2014, 281: 20133011-10.1098/rspb.2013.3011.
Google Scholar
Yamamoto M, Yoshida M: Fine structure of the ocelli of a synaptid holothurian, Opheodesoma spectabilis, and the effects of light and darkness. Zoomorphologie. 1978, 90: 1-17. 10.1007/BF00993740.
Google Scholar
Berrill M: The ethology of the synaptid holothurian, Opheodesoma spectabilis. Can J Zool. 1966, 44: 457-482. 10.1139/z66-046.
Google Scholar
Smith JE: On the nervous system of the starfish Marthasterias glacialis (L.). Philos T Roy Soc B. 1937, 227: 111-173. 10.1098/rstb.1937.0002.
Google Scholar
Eakin RM, Brandenburger JL: Effects of light on ocelli of seastars. Zoomorphologie. 1979, 92: 191-200. 10.1007/BF00994084.
Google Scholar
Penn PE, Alexander CG: Fine structure of the optic cushion in the asteroid Nepanthia belcheri. Mar Biol. 1980, 58: 251-256. 10.1007/BF00390773.
Google Scholar
Takasu N, Yoshida M: Photic effects on photosensory microvilli in the seastar Asterias amurensis (Echinodermata: Asteroida). Zoomorphology. 1983, 103: 135-148. 10.1007/BF00310473.
Google Scholar
Johnsen S: Identification and localization of a possible rhodopsin in the echinoderms Asterias forbesi (Asteroidea) and Ophioderma brevispinum (Ophiuroidea). Biol Bull. 1997, 193: 97-105. 10.2307/1542739.
CAS
PubMed
Google Scholar
Delroisse J, Lanterbecq D, Eeckhaut I, Mallefet J, Flammang P: Opsin detection in the sea urchin Paracentrotus lividus and the sea star Asterias rubens. Cah Biol Mar. 2013, 54: 721-727.
Google Scholar
Yoshida M: Extraocular Photoreception. Comparative Physiology and Evolution of Vision in Invertebrates. Edited by: Springer Berlin Heidelberg. 1979, 581-640.
Google Scholar
Yoshida M, Takasu N, Tamotsu S: Photoreception in Echinoderms. Photoreception and Vision in Invertebrates. Edited by: Ali MA. 1984, US: Springer, 743-771.
Google Scholar
Yoshida M, Ohtsuki H: The phototactic behavior of the starfish, Asterias amurensis Lütken. Biol Bull. 1968, 134: 516-532. 10.2307/1539869.
Google Scholar
Cobb JL, Moore A: Comparative studies on receptor structure in the brittlestar Ophiura ophiura. J Neurocytol. 1986, 15: 97-108. 10.1007/BF02057908.
CAS
PubMed
Google Scholar
Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G: Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature. 2001, 412: 819-822. 10.1038/35090573.
CAS
PubMed
Google Scholar
Rosenberg R: Benthic marine fauna structured by hydrodynamic processes and food availability. Neth J Sea Res. 1995, 34: 303-317. 10.1016/0077-7579(95)90040-3.
Google Scholar
Josefson AB: Large-scale estimate of somatic growth in Amphiura filiformis (Echinodermata: Ophiuroidea). Mar Biol. 1995, 124: 435-442. 10.1007/BF00363917.
Google Scholar
Baden SP, Pihl L, Rosenberg R: Effects of oxygen depletion on the ecology, blood physiology and fishery of the Norway lobster Nephrops norvegicus. Mar Ecol Prog Ser. 1990, 67: 141-155.
Google Scholar
Duineveld G, Van Noort GJ: Observations on the population dynamics of Amphiura filiformis (Ophiuroidea: Echinodermata) in the southern North Sea and its exploitation by the dab, Limanda limanda. Neth J Sea Res. 1986, 20: 85-94. 10.1016/0077-7579(86)90064-5.
Google Scholar
Pihl L: Changes in the diet of demersal fish due to eutrophication-induced hypoxia in the Kattegat, Sweden. Can J Fish Aquat Sci. 1994, 51: 321-336. 10.1139/f94-033.
Google Scholar
Woodley JD: The behaviour of some amphiurid Brittle stars. J Exp Mar Biol Ecol. 1975, 18: 29-46. 10.1016/0022-0981(75)90014-3.
Google Scholar
Loo L-O, Rosenberg R: Production and energy budget in marine suspension feeding populations: Mytilus edulis, Cerastoderma edule, Mya arenaria and Amphiura filiformis. J Sea Res. 1996, 35: 199-207.
Google Scholar
Solan M, Kennedy R: Observation and quantification of in situ animal-sediment relations using time-lapse sediment profile imagery (t-SPI). Mar Ecol-Progr Ser. 2002, 228: 179-191.
Google Scholar
Rosenberg R, Lundberg L: Photoperiodic activity pattern in the brittle star Amphiura filiformis. Mar Biol. 2004, 145: 651-656.
Google Scholar
Burns G, Ortega-Martinez O, Thorndyke MC, Peck LS, Dupont S, Clark MS: Dynamic gene expression profiles during arm regeneration in the brittle star Amphiura filiformis. J Exp Mar Biol Ecol. 2011, 407: 315-322. 10.1016/j.jembe.2011.06.032.
CAS
Google Scholar
Burns G, Ortega-Martinez O, Dupont S, Thorndyke MC, Peck LS, Clark MS: Intrinsic gene expression during regeneration in arm explants of Amphiura filiformis. J Exp Mar Biol Ecol. 2012, 413 (C): 106-112.
CAS
Google Scholar
Czarkwiani A, Dylus DV, Oliveri P: Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis. Gene Expr Patterns. 2013, 13: 464-472. 10.1016/j.gep.2013.09.002.
CAS
PubMed Central
PubMed
Google Scholar
Pearson WR, Wood T, Zhang Z, Miller W: Comparison of DNA sequences with protein sequences. Genomics. 1997, 46: 24-36. 10.1006/geno.1997.4995.
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410. 10.1016/S0022-2836(05)80360-2.
CAS
PubMed
Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A: Protein Identification and Analysis Tools on the ExPASy Server. 2005, 571-607.
Google Scholar
Burge CB, Karlin S: Finding the genes in genomic DNA. Curr Opin Struct Biol. 1998, 8: 346-354. 10.1016/S0959-440X(98)80069-9.
CAS
PubMed
Google Scholar
Jones DT, Taylor WR, Thornton JM: A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry. 1994, 33: 3038-3049. 10.1021/bi00176a037.
CAS
PubMed
Google Scholar
Gouy M, Guindon S, Gascuel O: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010, 27: 221-224. 10.1093/molbev/msp259.
CAS
PubMed
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32 (5): 1792-1797. 10.1093/nar/gkh340.
CAS
PubMed Central
PubMed
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24: 1596-1599. 10.1093/molbev/msm092.
CAS
PubMed
Google Scholar
Kumar S, Nei M, Dudley J, Tamura K: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 2008, 9: 299-306. 10.1093/bib/bbn017.
CAS
PubMed Central
PubMed
Google Scholar
Kozmik Z, Ruzickova J, Jonasova K, Matsumoto Y, Vopalensky P, Kozmikova I, Strnad H, Kawamura S, Piatigorsky J, Paces V: Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc Natl Acad Sci U S A. 2008, 105: 8989-8993. 10.1073/pnas.0800388105.
CAS
PubMed Central
PubMed
Google Scholar
Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, Robinson PR: Shedding new light on opsin evolution. P Roy Soc B-Biol Sci. 2012, 279: 3-14. 10.1098/rspb.2011.1819.
Google Scholar
Feuda R, Hamilton SC, McInerney JO, Pisani D: Metazoan opsin evolution reveals a simple route to animal vision. Proc Natl Acad Sci U S A. 2012, 109: 18868-18872. 10.1073/pnas.1204609109.
CAS
PubMed Central
PubMed
Google Scholar
Feuda R, Rota-Stabelli O, Oakley TH, Pisani D: The Comb Jelly Opsins and the origins of animal phototransduction. Genome Biol Evol. 2014, 6: 1964-1971. 10.1093/gbe/evu154.
CAS
PubMed Central
PubMed
Google Scholar
Guindon S, Delsuc F, Dufayard J-F, Gascuel O: Estimating Maximum Likelihood Phylogenies with PhyML. 2009, 113-137.
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52: 696-704. 10.1080/10635150390235520.
PubMed
Google Scholar
Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001, 18: 691-699. 10.1093/oxfordjournals.molbev.a003851.
CAS
PubMed
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012, 61: 539-542. 10.1093/sysbio/sys029.
PubMed Central
PubMed
Google Scholar
Shichida Y: Evolution of opsins and phototransduction. Philos T R Soc B. 2009, 364: 2881-2895. 10.1098/rstb.2009.0051.
CAS
Google Scholar
Terakita A, Kawano-Yamashita E, Koyanagi M: Evolution and diversity of opsins. WIREs Membr Transp Signal. 2012, 1: 104-111. 10.1002/wmts.6.
CAS
Google Scholar
Terakita A, Koyanagi M, Tsukamoto H, Yamashita T, Miyata T, Shichida Y: Counterion displacement in the molecular evolution of the rhodopsin family. Nat Struct Mol Biol. 2004, 11: 284-289. 10.1038/nsmb731.
CAS
PubMed
Google Scholar
Bockaert J, Philippe Pin J: Molecular tinkering of G protein‒coupled receptors: an evolutionary success. EMBO J. 1999, 18: 1723-1729. 10.1093/emboj/18.7.1723.
CAS
PubMed Central
PubMed
Google Scholar
Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE: Crystal structure of rhodopsin: AG protein-coupled receptor. Science. 2000, 289: 739-745. 10.1126/science.289.5480.739.
CAS
PubMed
Google Scholar
Fritze O, Filipek S, Kuksa V, Palczewski K, Hofmann KP, Ernst OP: Role of the conserved NPxxY (x) 5, 6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci U S A. 2003, 100: 2290-2295. 10.1073/pnas.0435715100.
CAS
PubMed Central
PubMed
Google Scholar
Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J: Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science. 2004, 306: 869-871. 10.1126/science.1099955.
CAS
PubMed
Google Scholar
Mooi R, David B: What a new model of skeletal homologies tells us about asteroid evolution. Am Zool. 2000, 40: 326-339. 10.1668/0003-1569(2000)040[0326:WANMOS]2.0.CO;2.
Google Scholar
Littlewood D, Smith AB, Clough KA, Emson RH: The interrelationships of the echinoderm classes: morphological and molecular evidence. Biol J Linn Soc. 1997, 61: 409-438. 10.1111/j.1095-8312.1997.tb01799.x.
Google Scholar
Smith MJ, Arndt A, Gorski S, Fajber E: The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J Mol Evol. 1993, 36: 545-554. 10.1007/BF00556359.
CAS
PubMed
Google Scholar
Telford MJ, Lowe CJ, Cameron CB, Ortega-Martinez O, Aronowicz J, Oliveri P, Copley RR: Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proc Biol Sci. 2014, 281: 20140479-10.1098/rspb.2014.0479.
PubMed Central
PubMed
Google Scholar
Hendler G: Brittlestar color-change and phototaxis (Echinodermata: Ophiuroidea: Ophiocomidae). Mar Ecol. 1984, 5: 379-401. 10.1111/j.1439-0485.1984.tb00131.x.
Google Scholar
Giese AC, Farman-Farmanian A: Resistance of the purple sea urchin to osmotic stress. Biol Bull. 1963, 124: 182-192. 10.2307/1539494.
Google Scholar
McFarland W: Light in the sea: the optical world of elasmobranchs. J Exp Zool. 1990, 256: 3-12. 10.1002/jez.1402560503.
Google Scholar
Claes JM, Aksnes DL, Mallefet J: Phantom hunter of the fjords: camouflage by counterillumination in a shark (Etmopterus spinax). J Exp Mar Biol Ecol. 2010, 388: 28-32. 10.1016/j.jembe.2010.03.009.
Google Scholar
Herring PJ: New observations on the bioluminescence of echinoderms. J Zool. 1974, 172: 401-418.
Google Scholar
Delroisse J, Flammang P, Mallefet J: Marine luciferases: are they really species-specific? A putative luciferase evolved by co-option in an echinoderm lineage. Proceedings of the 18th International Symposium on Bioluminescence and Chemiluminescence. Edited by: Kricka LJ. 2014, Uppsala
Google Scholar
Solan M, Battle EJ: Does the ophiuroid Amphiura filiformis alert conspecifics to the danger of predation through the generation of an alarm signal?. J Mar Biol Ass. 2003, 83: 1117-1118. 10.1017/S0025315403008361h.
Google Scholar
Tong D, Rozas NS, Oakley TH, Mitchell J, Colley NJ, McFall-Ngai MJ: Evidence for light perception in a bioluminescent organ. Proc Natl Acad Sci U S A. 2009, 106: 9836-9841. 10.1073/pnas.0904571106.
CAS
PubMed Central
PubMed
Google Scholar
Schnitzler CE, Pang K, Powers ML, Reitzel AM, Ryan JF, Simmons D, Tada T, Park M, Gupta J, Brooks SY: Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biol. 2012, 10: 107-10.1186/1741-7007-10-107.
CAS
PubMed Central
PubMed
Google Scholar
Mallefet J: Echinoderm bioluminescence: where, how and why do so many ophiuroids glow?. Bioluminescence in Focus – A Collection of Illuminating Essays. Edited by: Meyer-Rochow VB. 2009, Trivandrum: Research signpost, 67-83.
Google Scholar
Kumbalasiri T, Provencio I: Melanopsin and other novel mammalian opsins. Exp Eye Res. 2005, 81: 368-375. 10.1016/j.exer.2005.05.004.
CAS
PubMed
Google Scholar
Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, O’Hara BF: Role of melanopsin in circadian responses to light. Science. 2002, 298: 2211-2213. 10.1126/science.1076701.
CAS
PubMed
Google Scholar
Nasi E, Del Pilar Gomez M: Melanopsin-mediated light-sensing in amphioxus. Commun Integr Biol. 2009, 2 (5): 441-443. 10.4161/cib.2.5.9244.
CAS
PubMed Central
PubMed
Google Scholar
Shichida Y, Yamashita T, Imai H, Kishida T: Evolution and Senses: Opsins, Bitter Taste, and Olfaction. 2013
Google Scholar
Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG: Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 2003, 424: 75-81. 10.1038/nature01761.
Google Scholar
Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M: Melanopsin is required for non-image-forming photic responses in blind mice. Science. 2003, 301: 525-527. 10.1126/science.1086179.
CAS
PubMed
Google Scholar
Koyanagi M, Terakita A: Gq-coupled Rhodopsin subfamily composed of invertebrate visual pigment and melanopsin. Photochem Photobiol. 2008, 84: 1024-1030. 10.1111/j.1751-1097.2008.00369.x.
CAS
PubMed
Google Scholar
Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Schmedt C, Jegla T, Panda S: Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE. 2008, 3: e2451-10.1371/journal.pone.0002451.
PubMed Central
PubMed
Google Scholar
Plachetzki DC, Serb JM, Oakley TH: New insights into the evolutionary history of photoreceptor cells. Trends Ecol Evol. 2005, 20: 465-467. 10.1016/j.tree.2005.07.001.
PubMed
Google Scholar
Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD: A novel human opsin in the inner retina. J Neurosci. 2000, 20: 600-605.
CAS
PubMed
Google Scholar
Hattar S, Liao H-W, Takao M, Berson DM, Yau K-W: Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002, 295: 1065-1070. 10.1126/science.1069609.
CAS
PubMed Central
PubMed
Google Scholar
Rollag MD, Berson DM, Provencio I: Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythm. 2003, 18: 227-234. 10.1177/0748730403018003005.
Google Scholar
Fu Y, Zhong H, Wang M-HH, Luo D-G, Liao H-W, Maeda H, Hattar S, Frishman LJ, Yau K-W: Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc Natl Acad Sci U S A. 2005, 102: 10339-10344. 10.1073/pnas.0501866102.
CAS
PubMed Central
PubMed
Google Scholar
Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Tarttelin EE, Iuvone PM, Hankins MW, Tosini G, Lucas RJ: Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. Plos Biol. 2006, 4: e254-10.1371/journal.pbio.0040254.
PubMed Central
PubMed
Google Scholar
Brandenburger JL, Woolacott RM, Eakin RM: Fine structure of eyespots in tornarian larvae (Phylum: Hemichordata). Z Zellforsch Mikrosk Anat. 1973, 142: 89-102. 10.1007/BF00306706.
CAS
PubMed
Google Scholar
Nezlin LP, Yushin VV: Structure of the nervous system in the tornaria larva of Balanoglossus proterogonius (Hemichordata: Enteropneusta) and its phylogenetic implications. Zoomorphology. 2004, 123: 1-13. 10.1007/s00435-003-0086-z.
Google Scholar
Fain GL, Hardie R, Laughlin SB: Phototransduction and the evolution of photoreceptors. Curr Biol. 2010, 20: R114-R124. 10.1016/j.cub.2009.12.006.
CAS
PubMed Central
PubMed
Google Scholar
Holland LZ, Albalat R, Azumi K, Benito-Gutiérrez È, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ: The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res. 2008, 18: 1100-1111. 10.1101/gr.073676.107.
CAS
PubMed Central
PubMed
Google Scholar
Kusakabe T, Tsuda M: Photoreceptive systems in ascidians. Photochem Photobiol. 2007, 83: 248-252. 10.1562/2006-07-11-IR-965.
CAS
PubMed
Google Scholar
Tarttelin EE, Bellingham J, Hankins MW, Foster RG, Lucas RJ: Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. FEBS Lett. 2003, 554: 410-416. 10.1016/S0014-5793(03)01212-2.
CAS
PubMed
Google Scholar
Yamashita T, Ohuchi H, Tomonari S, Ikeda K, Sakai K, Shichida Y: Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci U S A. 2010, 107: 22084-22089. 10.1073/pnas.1012498107.
CAS
PubMed Central
PubMed
Google Scholar
Kojima D, Mori S, Torii M, Wada A, Morishita R, Fukada Y: UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS ONE. 2011, 6: e26388-10.1371/journal.pone.0026388.
CAS
PubMed Central
PubMed
Google Scholar
Frank TM, Johnsen S, Cronin TW: Light and vision in the deep-sea benthos: II. Vision in deep-sea crustaceans. J Exp Biol. 2012, 215: 3344-3353. 10.1242/jeb.072033.
PubMed
Google Scholar
Buchanan JB: Mucus secretion within the spines of ophiuroid echinoderms. Proc Zool Soc London. 1963, 141: 251-259.
Google Scholar
Arendt D, Hausen H, Purschke G: The “division of labour” model of eye evolution. Philos T R Soc B. 2009, 364: 2809-2817. 10.1098/rstb.2009.0104.
Google Scholar
Nilsson D-E: The evolution of eyes and visually guided behaviour. Philos T Roy Soc B. 2009, 364: 2833-2847. 10.1098/rstb.2009.0083.
Google Scholar
Morris VB, Selvakumaraswamy P, Whan R, Byrne M: Development of the five primary podia from the coeloms of a sea star larva: homology with the echinoid echinoderms and other deuterostomes. P Roy Soc B-Biol Sci. 2009, 276: 1277-1284. 10.1098/rspb.2008.1659.
Google Scholar
Takahashi K: Electrical responses to light stimuli in the isolated radial nerve of the sea urchin, Diadema setosum (Leske). Nature. 1964, 201: 1343-1344. 10.1038/2011343a0.
CAS
PubMed
Google Scholar
Millott N: Sensitivity to light and the reactions to changes in light intensity of the echinoid Diadema antillarum Philippi. Philos T R Soc B. 1954, 238: 187-220. 10.1098/rstb.1954.0009.
Google Scholar
Cobb J, Stubbs TR: The giant neurone system in ophiuroids. Cell Tissue Res. 1981, 219: 197-207.
CAS
PubMed
Google Scholar
Stubbs TR: The Neurophysiology of Photosensitivity in Ophiuroids. 1982, 403-408.
Google Scholar
Moore A, Cobb J: Neurophysiological studies on photic responses in Ophiura ophiura. Comp Biochem Phys A. 1985, 80: 11-16. 10.1016/0300-9629(85)90669-3.
Google Scholar
Wolken JJ: Photobehavior of marine invertebrates: extraocular photoreception. Comp Biochem Phys C. 1988, 91: 145-149. 10.1016/0742-8413(88)90180-6.
CAS
Google Scholar
Kartelija G, Nedeljkovic M, Radenovic L: Photosensitive neurons in mollusks. Comp Biochem Phys A. 2003, 134: 483-495. 10.1016/S1095-6433(02)00351-3.
Google Scholar
Biressi ACM, Zou T, Dupont S, Dahlberg C, Di Benedetto C, Bonasoro F, Thorndyke M, Carnevali MDC: Wound healing and arm regeneration in Ophioderma longicaudum and Amphiura filiformis (Ophiuroidea, Echinodermata): comparative morphogenesis and histogenesis. Zoomorphology. 2010, 129: 1-19. 10.1007/s00435-009-0095-7.
Google Scholar
Delroisse J, Mallefet J, Flammang P: NCBI SRA repository. Raw sequencing reads (Amphiura filiformis, adult arm tissues). [http://www.ncbi.nlm.nih.gov/sra/?term=SRR1523743]
Delroisse J, Ullrich-Lüter E, Ortega-Martinez O, Dupont S, Arnone M, Mallefet J, Flammang P: DRYAD Data repository. Truncated opsin alignment. [http://dx.doi.org/10.5061/dryad.7s8h7]
Delroisse J, Ullrich-Lüter E, Ortega-Martinez O, Dupont S, Arnone M, Mallefet J, Flammang P: DRYAD Data repository. ML tree. [http://dx.doi.org/10.5061/dryad.7s8h7]
Delroisse J, Ullrich-Lüter E, Ortega-Martinez O, Dupont S, Arnone M, Mallefet J, Flammang P: DRYAD Data repository. Bayesian tree. [http://dx.doi.org/10.5061/dryad.7s8h7]