Sokoloff A: The Genetics of Tribolium and Related Species. 1966, New York: Academic Press, 1:
Google Scholar
Bucher G, Scholten J, Klingler M: Parental RNAi in Tribolium (Coleoptera). Curr Biol CB. 2002, 12: R85-R86. 10.1016/S0960-9822(02)00666-8.
CAS
Google Scholar
Tomoyasu Y, Denell RE: Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol. 2004, 214: 575-578. 10.1007/s00427-004-0434-0.
CAS
PubMed
Google Scholar
Trauner J, Schinko J, Lorenzen MD, Shippy TD, Wimmer EA, Beeman RW, Klingler M, Bucher G, Brown SJ: Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC Biol. 2009, 7: 73-10.1186/1741-7007-7-73.
PubMed Central
PubMed
Google Scholar
Schinko JB, Weber M, Viktorinova I, Kiupakis A, Averof M, Klingler M, Wimmer EA, Bucher G: Functionality of the GAL4/UAS system in Tribolium requires the use of endogenous core promoters. BMC Dev Biol. 2010, 10: 53-10.1186/1471-213X-10-53.
PubMed Central
PubMed
Google Scholar
Schinko JB, Hillebrand K, Bucher G: Heat shock-mediated misexpression of genes in the beetle Tribolium castaneum. Dev Genes Evol. 2012, 222: 287-298. 10.1007/s00427-012-0412-x.
CAS
PubMed
Google Scholar
Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Beeman RW, Brown SJ, Bucher G, Friedrich M, Grimmelikhuijzen CJP, Klingler M, Lorenzen M, Richards S, Roth S, Schröder R, Tautz D, Zdobnov EM, Muzny D, Gibbs RA, Weinstock GM, Attaway T, Bell S, Buhay CJ, Chandrabose MN, Chavez D, Clerk-Blankenburg KP, Cree A, Dao M, et al: The genome of the model beetle and pest Tribolium castaneum. Nature. 2008, 452: 949-955. 10.1038/nature06784.
CAS
PubMed
Google Scholar
Kim HS, Murphy T, Xia J, Caragea D, Park Y, Beeman RW, Lorenzen MD, Butcher S, Manak JR, Brown SJ: BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum. Nucleic Acids Res. 2010, 38 (Database issue): D437-D442.
CAS
PubMed Central
PubMed
Google Scholar
de Santis F, François M-C, Merlin C, Pelletier J, Maïbèche-Coisné M, Conti E, Jacquin-Joly E: Molecular Cloning and in Situ Expression Patterns of Two New Pheromone-Binding Proteins from the Corn Stemborer Sesamia nonagrioides. J Chem Ecol. 2006, 32: 1703-1717. 10.1007/s10886-006-9103-2.
PubMed
Google Scholar
Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P: Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem. 1999, 262: 745-754. 10.1046/j.1432-1327.1999.00438.x.
CAS
PubMed
Google Scholar
Pelosi P, Zhou J-J, Ban LP, Calvello M: Soluble proteins in insect chemical communication. Cell Mol Life Sci CMLS. 2006, 63: 1658-1676. 10.1007/s00018-005-5607-0.
CAS
Google Scholar
Wanner KW, Willis LG, Theilmann DA, Isman MB, Feng Q, Plettner E: Analysis of the Insect OS-D-Like Gene Family. J Chem Ecol. 2004, 30: 889-911.
CAS
PubMed
Google Scholar
Liu R, He X, Lehane S, Lehane M, Hertz-Fowler C, Berriman M, Field LM, Zhou J-J: Expression of chemosensory proteins in the tsetse fly Glossina morsitans morsitans is related to female host-seeking behaviour. Insect Mol Biol. 2012, 21: 41-48. 10.1111/j.1365-2583.2011.01114.x.
PubMed Central
PubMed
Google Scholar
Leal WS: Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and Degrading Enzymes. Annu Rev Entomol. 2013, 58: 373-391. 10.1146/annurev-ento-120811-153635.
CAS
PubMed
Google Scholar
Steinbrecht RA: Odorant-binding proteins: expression and function. Ann N Y Acad Sci. 1998, 855: 323-332. 10.1111/j.1749-6632.1998.tb10591.x.
CAS
PubMed
Google Scholar
Vogt RG, Riddiford LM: Pheromone binding and inactivation by moth antennae. Nature. 1981, 293: 161-163. 10.1038/293161a0.
CAS
PubMed
Google Scholar
Vieira FG, Rozas J: Comparative Genomics of the Odorant-Binding and Chemosensory Protein Gene Families across the Arthropoda: Origin and Evolutionary History of the Chemosensory System. Genome Biol Evol. 2011, 3: 476-490. 10.1093/gbe/evr033.
CAS
PubMed Central
PubMed
Google Scholar
Sandler BH, Nikonova L, Leal WS, Clardy J: Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol. 2000, 7: 143-151. 10.1016/S1074-5521(00)00078-8.
CAS
PubMed
Google Scholar
Briand L, Swasdipan N, Nespoulous C, Bézirard V, Blon F, Huet J-C, Ebert P, Penollet J-C: Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a brood pheromone carrier. Eur J Biochem FEBS. 2002, 269: 4586-4596. 10.1046/j.1432-1033.2002.03156.x.
CAS
Google Scholar
Scaloni A, Monti M, Angeli S, Pelosi P: Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun. 1999, 266: 386-391. 10.1006/bbrc.1999.1791.
CAS
PubMed
Google Scholar
Foret S, Maleszka R: Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res. 2006, 16: 1404-1413. 10.1101/gr.5075706.
CAS
PubMed Central
PubMed
Google Scholar
Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA: Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res. 2002, 12: 1357-1369. 10.1101/gr.239402.
CAS
PubMed Central
PubMed
Google Scholar
Spinelli S, Lagarde A, Iovinella I, Legrand P, Tegoni M, Pelosi P, Cambillau C: Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochem Mol Biol. 2012, 42: 41-50. 10.1016/j.ibmb.2011.10.005.
CAS
PubMed
Google Scholar
Gu S-H, Wang S-Y, Zhang X-Y, Ji P, Liu J-T, Wang G-R, Wu K-M, Guo Y-Y, Zhou J-J, Zhang Y-J: Functional Characterizations of Chemosensory Proteins of the Alfalfa Plant Bug Adelphocoris lineolatus Indicate Their Involvement in Host Recognition. PLoS One. 2012, 7: e42871-10.1371/journal.pone.0042871.
CAS
PubMed Central
PubMed
Google Scholar
Ozaki M: Ant Nestmate and Non-Nestmate Discrimination by a Chemosensory Sensillum. Science. 2005, 309: 311-314. 10.1126/science.1105244.
CAS
PubMed
Google Scholar
Jacquin-Joly E, Vogt RG, François M-C, Meillour PN-L: Functional and Expression Pattern Analysis of Chemosensory Proteins Expressed in Antennae and Pheromonal Gland of Mamestra brassicae. Chem Senses. 2001, 26: 833-844. 10.1093/chemse/26.7.833.
CAS
PubMed
Google Scholar
Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MM, Li M, Hillbur Y, Bohlmann J, Hansson BS, Schlyter F: Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics. 2013, 14: 198-10.1186/1471-2164-14-198.
CAS
PubMed Central
PubMed
Google Scholar
González D, Zhao Q, McMahan C, Velasquez D, Haskins WE, Sponsel V, Cassill A, Renthal R: The major antennal chemosensory protein of red imported fire ant workers. Insect Mol Biol. 2009, 18: 395-404. 10.1111/j.1365-2583.2009.00883.x.
PubMed Central
PubMed
Google Scholar
Liu X, Luo Q, Zhong G, Rizwan-Ul-Haq M, Hu M: Molecular characterization and expression pattern of four chemosensory proteins from diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J Biochem (Tokyo). 2010, 148: 189-200. 10.1093/jb/mvq050.
CAS
Google Scholar
Forstner M, Breer H, Krieger J: A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int J Biol Sci. 2009, 5: 745-757.
CAS
PubMed Central
PubMed
Google Scholar
Grosse-Wilde E, Gohl T, Bouché E, Breer H, Krieger J: Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur J Neurosci. 2007, 25: 2364-2373. 10.1111/j.1460-9568.2007.05512.x.
PubMed
Google Scholar
Grosse-Wilde E, Svatos A, Krieger J: A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses. 2006, 31: 547-555. 10.1093/chemse/bjj059.
CAS
PubMed
Google Scholar
Hallem EA, Ho MG, Carlson JR: The molecular basis of odor coding in the Drosophila antenna. Cell. 2004, 117: 965-979. 10.1016/j.cell.2004.05.012.
CAS
PubMed
Google Scholar
Syed Z, Ishida Y, Taylor K, Kimbrell DA, Leal WS: Pheromone reception in fruit flies expressing a moth’s odorant receptor. Proc Natl Acad Sci U S A. 2006, 103: 16538-16543. 10.1073/pnas.0607874103.
CAS
PubMed Central
PubMed
Google Scholar
Xu P, Atkinson R, Jones DNM, Smith DP: Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron. 2005, 45: 193-200. 10.1016/j.neuron.2004.12.031.
CAS
PubMed
Google Scholar
Arya GH, Weber AL, Wang P, Magwire MM, Negron YLS, Mackay TFC, Anholt RRH: Natural Variation, Functional Pleiotropy and Transcriptional Contexts of Odorant Binding Protein Genes in Drosophila melanogaster. Genetics. 2010, 186: 1475-1485. 10.1534/genetics.110.123166.
CAS
PubMed Central
PubMed
Google Scholar
Krieger MJB, Ross KG: Molecular evolutionary analyses of the odorant-binding protein gene Gp-9 in fire ants and other Solenopsis species. Mol Biol Evol. 2005, 22: 2090-2103. 10.1093/molbev/msi203.
CAS
PubMed
Google Scholar
Swarup S, Williams TI, Anholt RRH: Functional dissection of Odorant binding protein genes in Drosophila melanogaster. Genes Brain Behav. 2011, 10: 648-657. 10.1111/j.1601-183X.2011.00704.x.
CAS
PubMed Central
PubMed
Google Scholar
Biessmann H, Andronopoulou E, Biessmann MR, Douris V, Dimitratos SD, Eliopoulos E, Guerin PM, Iatrou K, Justice RW, Kröber T, Marinotti O, Tsitoura P, Woods DF, Walter MF: The Anopheles gambiae Odorant Binding Protein 1 (AgamOBP1) Mediates Indole Recognition in the Antennae of Female Mosquitoes. PLoS One. 2010, 5: e9471-10.1371/journal.pone.0009471.
PubMed Central
PubMed
Google Scholar
Pelletier J, Guidolin A, Syed Z, Cornel AJ, Leal WS: Knockdown of a Mosquito Odorant-binding Protein Involved in the Sensitive Detection of Oviposition Attractants. J Chem Ecol. 2010, 36: 245-248. 10.1007/s10886-010-9762-x.
CAS
PubMed Central
PubMed
Google Scholar
Gomez-Diaz C, Reina JH, Cambillau C, Benton R: Ligands for Pheromone-Sensing Neurons Are Not Conformationally Activated Odorant Binding Proteins. PLoS Biol. 2013, 11: e1001546-10.1371/journal.pbio.1001546.
CAS
PubMed Central
PubMed
Google Scholar
Pitts RJ, Rinker DC, Jones PL, Rokas A, Zwiebel LJ: Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics. 2011, 12: 271-10.1186/1471-2164-12-271.
CAS
PubMed Central
PubMed
Google Scholar
Farhadian SF, Suárez-Fariñas M, Cho CE, Pellegrino M, Vosshall LB: Post-fasting olfactory, transcriptional, and feeding responses in Drosophila. Physiol Behav. 2012, 105: 544-553. 10.1016/j.physbeh.2011.09.007.
CAS
PubMed Central
PubMed
Google Scholar
Pelletier J, Leal WS: Genome Analysis and Expression Patterns of Odorant-Binding Proteins from the Southern House Mosquito Culex pipiens quinquefasciatus. PLoS One. 2009, 4: e6237-10.1371/journal.pone.0006237.
PubMed Central
PubMed
Google Scholar
Zhang Y-N, Jin J-Y, Jin R, Xia Y-H, Zhou J-J, Deng J-Y, Dong S-L: Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker). PLoS One. 2013, 8: e69715-10.1371/journal.pone.0069715.
CAS
PubMed Central
PubMed
Google Scholar
Zheng W, Peng W, Zhu C, Zhang Q, Saccone G, Zhang H: Identification and Expression Profile Analysis of Odorant Binding Proteins in the Oriental Fruit Fly Bactrocera dorsalis. Int J Mol Sci. 2013, 14: 14936-14949. 10.3390/ijms140714936.
PubMed Central
PubMed
Google Scholar
Gong D-P, Zhang H, Zhao P, Lin Y, Xia Q-Y, Xiang Z-H: Identification and expression pattern of the chemosensory protein gene family in the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2007, 37: 266-277. 10.1016/j.ibmb.2006.11.012.
CAS
PubMed
Google Scholar
Zhou J-J, Kan Y, Antoniw J, Pickett JA, Field LM: Genome and EST Analyses and Expression of a Gene Family with Putative Functions in Insect Chemoreception. Chem Senses. 2006, 31: 453-465. 10.1093/chemse/bjj050.
CAS
PubMed
Google Scholar
Dani FR, Michelucci E, Francese S, Mastrobuoni G, Cappellozza S, Marca GL, Niccolini A, Felicioli A, Moneti G, Pelosi P: Odorant-Binding Proteins and Chemosensory Proteins in Pheromone Detection and Release in the Silkmoth Bombyx mori. Chem Senses. 2011, 36: 335-344. 10.1093/chemse/bjq137.
CAS
PubMed
Google Scholar
Sun Y-L, Huang L-Q, Pelosi P, Wang C-Z: Expression in Antennae and Reproductive Organs Suggests a Dual Role of an Odorant-Binding Protein in Two Sibling Helicoverpa Species. PLoS One. 2012, 7: e30040-10.1371/journal.pone.0030040.
CAS
PubMed Central
PubMed
Google Scholar
Maleszka J, Forêt S, Saint R, Maleszka R: RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev Genes Evol. 2007, 217: 189-196. 10.1007/s00427-006-0127-y.
CAS
PubMed
Google Scholar
Levy F, Bulet P, Ehret-Sabatier L: Proteomic Analysis of the Systemic Immune Response of Drosophila. Mol Cell Proteomics. 2004, 3: 156-166.
CAS
PubMed
Google Scholar
Nomura A, Kawasaki K, Kubo T, Natori S: Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). Int J Dev Biol. 1992, 36: 391-398.
CAS
PubMed
Google Scholar
Schütz S, Weißbecker B, Schroth P, Schöning MJ: Linkage of Inanimate Structures to Biological Systems — Smart Materials in Biological Micro- and Nanosystems. Smart Mater. Edited by: Hoffmann K-H. 2001, Heidelberg: Springer Berlin, 149-157.
Google Scholar
Di Pietrantonio F, Cannatà D, Benetti M, Verona E, Varriale A, Staiano M, D’Auria S: Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins. Biosens Bioelectron. 2013, 41: 328-334.
CAS
PubMed
Google Scholar
Schütz S, Weißbecker B, Koch UT, Hummel HE: Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens Bioelectron. 1999, 14: 221-228. 10.1016/S0956-5663(98)00092-X.
Google Scholar
Johne AB, Weissbecker B, Schütz S: Approaching risk assessment of complex disease development in horse chestnut trees: a chemical ecologist’s perspective. J Appl Entomol. 2008, 132: 349-359. 10.1111/j.1439-0418.2008.01283.x.
Google Scholar
Zhou J-J, Field LM, He XL: Insect Odorant-Binding Proteins: Do They Offer an Alternative Pest Control Strategy?. Outlooks Pest Manag. 2010, 21: 31-34. 10.1564/21feb08.
CAS
Google Scholar
Pannure A, Mutthuraju GP, Imran S: The sense of smell in insects: a target for pest management? - A review. Curr Biot. 2012, 6: 399-419.
Google Scholar
Abdel-Sattar E, Zaitoun AA, Farag MA, Gayed SHE, Harraz FMH: Chemical composition, insecticidal and insect repellent activity of Schinus molle L. leaf and fruit essential oils against Trogoderma granarium and Tribolium castaneum. Nat Prod Res. 2010, 24: 226-235. 10.1080/14786410802346223.
CAS
PubMed
Google Scholar
Andreev D, Kreitman M, Phillips TW, Beeman RW, ffrench-Constant RH: Multiple origins of cyclodiene insecticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae). J Mol Evol. 1999, 48: 615-624. 10.1007/PL00006504.
CAS
PubMed
Google Scholar
da Affonso RS, Affonso RS, Guimarães AP, Oliveira AA, Slana GBC, França TCC: Applications of molecular modeling in the design of new insect repellents targeting the odorant binding protein of Anopheles gambiae. J Braz Chem Soc. 2013, 24: 473-482. 10.1590/S0103-50532013000300015.
Google Scholar
Ridley AW, Hereward JP, Daglish GJ, Raghu S, Collins PJ, Walter GH: The spatiotemporal dynamics of Tribolium castaneum (Herbst): adult flight and gene flow. Mol Ecol. 2011, 20: 1635-1646. 10.1111/j.1365-294X.2011.05049.x.
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012, 9: 357-359. 10.1038/nmeth.1923.
CAS
PubMed Central
PubMed
Google Scholar
Forêt S, Wanner KW, Maleszka R: Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analyses and expressional profiling. Insect Biochem Mol Biol. 2007, 37: 19-28. 10.1016/j.ibmb.2006.09.009.
PubMed
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
CAS
PubMed Central
PubMed
Google Scholar
Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JGR, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD, Birney E: The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002, 12: 1611-1618. 10.1101/gr.361602.
CAS
PubMed Central
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009, 25: 2078-2079. 10.1093/bioinformatics/btp352.
PubMed Central
PubMed
Google Scholar
Patel RK, Jain M: NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data. PLoS One. 2012, 7: e30619-10.1371/journal.pone.0030619.
CAS
PubMed Central
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011, 29: 644-652. 10.1038/nbt.1883.
CAS
PubMed Central
PubMed
Google Scholar
Stanke M, Diekhans M, Baertsch R, Haussler D: Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008, 24: 637-644. 10.1093/bioinformatics/btn013.
CAS
PubMed
Google Scholar
iBeetle consortium: http://ibeetle.uni-Goettingen.de,
Stanke M, Bucher G, Klingler M, iBeetle genome browser: http://bioinf.uni-Greifswald.de/tcas/,
Kent WJ: BLAT—The BLAST-Like Alignment Tool. Genome Res. 2002, 12: 656-664. 10.1101/gr.229202. Article published online before March 2002.
CAS
PubMed Central
PubMed
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011, 8: 785-786. 10.1038/nmeth.1701.
CAS
PubMed
Google Scholar
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011, 39 (Database issue): D225-D229.
CAS
PubMed Central
PubMed
Google Scholar
Pavlidis P, Noble WS: Matrix2png: a utility for visualizing matrix data. Bioinformatics. 2003, 19: 295-296. 10.1093/bioinformatics/19.2.295.
CAS
PubMed
Google Scholar
Inkscape: http://Www.inkscape.org,
R: A Language and Environment for Statistical Computing. [http://www.R-project.org]
Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol. 2010, 11: R106-10.1186/gb-2010-11-10-r106.
CAS
PubMed Central
PubMed
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004, 5: R80-10.1186/gb-2004-5-10-r80.
PubMed Central
PubMed
Google Scholar
Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33: 511-518. 10.1093/nar/gki198.
CAS
PubMed Central
PubMed
Google Scholar
Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinforma Oxf Engl. 2006, 22: 2688-2690. 10.1093/bioinformatics/btl446.
CAS
Google Scholar
Kapushesky M, Adamusiak T, Burdett T, Culhane A, Farne A, Filippov A, Holloway E, Klebanov A, Kryvych N, Kurbatova N, Kurnosov P, Malone J, Melnichuk O, Petryszak R, Pultsin N, Rustici G, Tikhonov A, Travillian RS, Williams E, Zorin A, Parkinson H, Brazma A: Gene Expression Atlas update–a value-added database of microarray and sequencing-based functional genomics experiments. Nucleic Acids Res. 2011, 40: D1077-D1081.
PubMed Central
PubMed
Google Scholar
Letunic I, Bork P: Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007, 23: 127-128. 10.1093/bioinformatics/btl529.
CAS
PubMed
Google Scholar
Wogulis M, Morgan T, Ishida Y, Leal WS, Wilson DK: The crystal structure of an odorant binding protein from Anopheles gambiae: Evidence for a common ligand release mechanism. Biochem Biophys Res Commun. 2006, 339: 157-164. 10.1016/j.bbrc.2005.10.191.
CAS
PubMed
Google Scholar
Zhou J-J, Robertson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM: Characterisation of Bombyx mori Odorant-binding Proteins Reveals that a General Odorant-binding Protein Discriminates Between Sex Pheromone Components. J Mol Biol. 2009, 389: 529-545. 10.1016/j.jmb.2009.04.015.
CAS
PubMed
Google Scholar
Vieira FG, Forêt S, He X, Rozas J, Field LM, Zhou J-J: Unique Features of Odorant-Binding Proteins of the Parasitoid Wasp Nasonia vitripennis Revealed by Genome Annotation and Comparative Analyses. PLoS One. 2012, 7: e43034-10.1371/journal.pone.0043034.
CAS
PubMed Central
PubMed
Google Scholar
Zhou J-J: Chapter Ten - Odorant-Binding Proteins in Insects. Vitam Horm. Volume Volume 83. Edited by: Litwack G. 2010, Amsterdam: Academic Press, 241-272. [Pheromones]
Google Scholar
Eirín-López JM, Rebordinos L, Rooney AP, Rozas J: The Birth-and-Death Evolution of Multigene Families Revisited. Genome Dyn. Volume 7. Edited by: Garrido-Ramos MA. 2012, Basel: S. KARGER AG, 170-196.
Google Scholar
Zhou J-J, Huang W, Zhang G-A, Pickett JA, Field LM: “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene. 2004, 327: 117-129. 10.1016/j.gene.2003.11.007.
CAS
PubMed
Google Scholar
Dreyer D, Vitt H, Dippel S, Goetz B, El Jundi B, Kollmann M, Huetteroth W, Schachtner J: 3D Standard Brain of the Red Flour Beetle Tribolium Castaneum: A Tool to Study Metamorphic Development and Adult Plasticity. Front Syst Neurosci. 2010, 4: 3-
PubMed Central
PubMed
Google Scholar
Alabi T, Marion-Poll F, Danho M, Mazzucchelli GD, De Pauw E, Haubruge E, Francis F: Identification of taste receptors and proteomic characterization of the antenna and legs of Tribolium brevicornis, a stored food product pest. Insect Mol Biol. 2013, 23: 1-12.
PubMed
Google Scholar
Engsontia P, Sanderson AP, Cobb M, Walden KKO, Robertson HM, Brown S: The red flour beetle’s large nose: an expanded odorant receptor gene family in Tribolium castaneum. Insect Biochem Mol Biol. 2008, 38: 387-397. 10.1016/j.ibmb.2007.10.005.
CAS
PubMed
Google Scholar
Li J, Lehmann S, Weißbecker B, Ojeda Naharros I, Schütz S, Joop G, Wimmer EA: Odoriferous Defensive Stink Gland Transcriptome to Identify Novel Genes Necessary for Quinone Synthesis in the Red Flour Beetle, Tribolium castaneum. PLoS Genet. 2013, 9: e1003596-10.1371/journal.pgen.1003596.
CAS
PubMed Central
PubMed
Google Scholar
Xu PX, Zwiebel LJ, Smith DP: Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol. 2003, 12: 549-560. 10.1046/j.1365-2583.2003.00440.x.
CAS
PubMed
Google Scholar
Gong D-P, Zhang H-J, Zhao P, Xia Q-Y, Xiang Z-H: The Odorant Binding Protein Gene Family from the Genome of Silkworm, Bombyx mori. BMC Genomics. 2009, 10: 332-10.1186/1471-2164-10-332.
PubMed Central
PubMed
Google Scholar
Vieira FG, Sánchez-Gracia A, Rozas J: Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution. Genome Biol. 2007, 8: R235-10.1186/gb-2007-8-11-r235.
PubMed Central
PubMed
Google Scholar
Librado P, Rozas J: Uncovering the functional constraints underlying the genomic organisation of the Odorant-Binding Protein genes. Genome Biol Evol. 2013, 5: 2096-2108. 10.1093/gbe/evt158.
CAS
PubMed Central
PubMed
Google Scholar
Jafari S, Alkhori L, Schleiffer A, Brochtrup A, Hummel T, Alenius M: Combinatorial Activation and Repression by Seven Transcription Factors Specify Drosophila Odorant Receptor Expression. PLoS Biol. 2012, 10: e1001280-10.1371/journal.pbio.1001280.
CAS
PubMed Central
PubMed
Google Scholar
Leal WS, Nikonova L, Peng G: Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett. 1999, 464: 85-90. 10.1016/S0014-5793(99)01683-X.
CAS
PubMed
Google Scholar
Hungate EA, Earley EJ, Boussy IA, Turissini DA, Ting C-T, Moran JR, Wu M-L, Wu C-I, Jones CD: A Locus in Drosophila sechellia Affecting Tolerance of a Host Plant Toxin. Genetics. 2013, 195: 1063-1075. 10.1534/genetics.113.154773.
CAS
PubMed Central
PubMed
Google Scholar
Qiao H-L, Deng P-Y, Li D-D, Chen M, Jiao Z-J, Liu Z-C, Zhang Y-Z, Kan Y-C: Expression analysis and binding experiments of chemosensory proteins indicate multiple roles in Bombyx mori. J Insect Physiol. 2013, 59: 667-675. 10.1016/j.jinsphys.2013.04.004.
CAS
PubMed
Google Scholar
Ju Q, Li X, Jiang X-J, Qu M-J, Guo X-Q, Han Z-J, Li F: Transcriptome and Tissue-Specific Expression Analysis of Obp and Csp Genes in the Dark Black Chafer. Arch Insect Biochem Physiol. 2014, 87: 177-200. 10.1002/arch.21188.
CAS
PubMed
Google Scholar
Qiao H, He X, Schymura D, Ban L, Field L, Dani FR, Michelucci E, Caputo B, della Torre A, Iatrou K, Zhou J-J, Krieger J, Pelosi P: Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cell Mol Life Sci. 2010, 68: 1799-1813.
PubMed
Google Scholar
Schultze A, Pregitzer P, Walter MF, Woods DF, Marinotti O, Breer H, Krieger J: The Co-Expression Pattern of Odorant Binding Proteins and Olfactory Receptors Identify Distinct Trichoid Sensilla on the Antenna of the Malaria Mosquito Anopheles gambiae. PLoS One. 2013, 8: e69412-10.1371/journal.pone.0069412.
CAS
PubMed Central
PubMed
Google Scholar
Contreras E, Rausell C, Real MD: Proteome Response of Tribolium castaneum Larvae to Bacillus thuringiensis Toxin Producing Strains. PLoS One. 2013, 8: e55330-10.1371/journal.pone.0055330.
CAS
PubMed Central
PubMed
Google Scholar
Xu J, Baulding J, Palli SR: Proteomics of Tribolium castaneum seminal fluid proteins: Identification of an angiotensin-converting enzyme as a key player in regulation of reproduction. J Proteomics. 2013, 78: 83-93.
CAS
PubMed
Google Scholar
Sirot LK, Poulson RL, McKenna MC, Girnary H, Wolfner MF, Harrington LC: Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction. Insect Biochem Mol Biol. 2008, 38: 176-189. 10.1016/j.ibmb.2007.10.007.
CAS
PubMed Central
PubMed
Google Scholar
Ban L, Napolitano E, Serra A, Zhou X, Iovinella I, Pelosi P: Identification of pheromone-like compounds in male reproductive organs of the oriental locust Locusta migratoria. Biochem Biophys Res Commun. 2013, 437: 620-624. 10.1016/j.bbrc.2013.07.015.
CAS
PubMed
Google Scholar
Liu GX, Xuan N, Chu D, Xie HY, Fan ZX, Bi YP, Picimbon J-F, Qin YC, Zhong ST, Li YF, Gao ZL, Pan WL, Wang GY, Rajashekar B: Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1. Arch Insect Biochem Physiol. 2014, 85: 137-151. 10.1002/arch.21148.
CAS
PubMed
Google Scholar
Xuan N, Guo X, Xie H-Y, Lou Q-N, Lu X-B, Liu G-X, Picimbon J-F: Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Sci. 2014, (doi: 10.1111/1744-7917.12116)
Google Scholar
Liu Y-L, Guo H, Huang L-Q, Pelosi P, Wang C-Z: Unique function of a chemosensory protein in the proboscis of two Helicoverpa species. J Exp Biol. 2014, 217 (Pt 10): 1821-1826.
CAS
PubMed
Google Scholar
Findlay GD, Yi X, MacCoss MJ, Swanson WJ: Proteomics Reveals Novel Drosophila Seminal Fluid Proteins Transferred at Mating. PLoS Biol. 2008, 6: e178-10.1371/journal.pbio.0060178.
PubMed Central
PubMed
Google Scholar
GEO accession. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63162,
endmemo: http://www.endmemo.com/bio/proie.php,
jpred: http://www.compbio.dundee.ac.uk/www-jpred/index.html,