Dechering KJ, Cuelenaere K, Konings RN, Leunissen JA: Distinct frequency-distributions of homopolymeric DNA tracts in different genomes. Nucl Acids Res. 1998, 26: 4056-4062. 10.1093/nar/26.17.4056.
Article
CAS
PubMed Central
PubMed
Google Scholar
Marx KA, Zhou Y, Kishawi IQ: Evidence for long poly(dA).poly(dT) tracts in D. discoideum DNA at high frequencies and their preferential avoidance of nucleosomal DNA core regions. J Biomol Struct Dyn. 2006, 23: 429-446. 10.1080/07391102.2006.10531237.
Article
CAS
PubMed
Google Scholar
Zhou Y, Bizzaro JW, Marx KA: Homopolymer tract length dependent enrichments in functional regions of 27 eukaryotes and their novel dependence on the organism DNA (G + C)% composition. BMC Genomics. 2004, 5: 95-104. 10.1186/1471-2164-5-95.
Article
PubMed Central
PubMed
Google Scholar
Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y, Widom J, Segal E: Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comp Biol. 2008, 4: e1000216-10.1371/journal.pcbi.1000216.
Article
Google Scholar
Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF: A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res. 2008, 18: 1073-1083. 10.1101/gr.078261.108.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dai J, Chuang RY, Kelly TJ: DNA replication origins in the Schizosaccharomyces pombe genome. Proc Natl Acad Sci U S A. 2005, 102: 337-342. 10.1073/pnas.0408811102.
Article
CAS
PubMed Central
PubMed
Google Scholar
Segal E, Widom J: Poly(dA:dT) tracts: major determinants of nucleosome organization. Curr Opin Struct Biol. 2009, 19: 65-71. 10.1016/j.sbi.2009.01.004.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cohanim AB, Haran TE: The coexistence of the nucleosome positioning code with the genetic code on eukaryotic genomes. Nucl Acids Res. 2009, 37: 6466-6476. 10.1093/nar/gkp689.
Article
CAS
PubMed Central
PubMed
Google Scholar
Radman-Livaja M, Rando OJ: Nucleosome positioning: how is it established, and why does it matter?. Dev Biol. 2010, 339: 258-266. 10.1016/j.ydbio.2009.06.012.
Article
CAS
PubMed Central
PubMed
Google Scholar
Segal E, Widom J: What controls nucleosome positions?. Trends Genet. 2009, 25: 335-343. 10.1016/j.tig.2009.06.002.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, Pugh BF: A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science. 2011, 332: 977-980. 10.1126/science.1200508.
Article
CAS
PubMed
Google Scholar
Polson HEJ, Blackman MJ: A role for poly (dA) poly(dT) tracts in directing activity of the Plasmodium falciparum calmodulin gene promoter. Mol Biochem Parasitol. 2005, 141: 179-189. 10.1016/j.molbiopara.2005.02.008.
Article
CAS
PubMed
Google Scholar
Porter ME: Positive and negative effects of deletions and mutations within the 5’ flanking sequences of Plasmodium falciparum DNA polymerase delta. Mol Biochem Parasitol. 2002, 122: 9-19. 10.1016/S0166-6851(02)00064-6.
Article
CAS
PubMed
Google Scholar
Ponts N, Harris EY, Prudhomme J, Wick I, Eckhardt-Ludka C, Hicks GR, Hardiman G, Lonardi S, Le Roch KG: Nucleosome landscape and control of transcription in the human malaria parasite. Genome Res. 2010, 20: 228-238. 10.1101/gr.101063.109.
Article
CAS
PubMed Central
PubMed
Google Scholar
Westenberger SJ, Cui L, Dharia N, Winzeler E, Cui L: Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes. BMC Genomics. 2009, 10: 610-621. 10.1186/1471-2164-10-610.
Article
PubMed Central
PubMed
Google Scholar
Bunnik EM, Polishko A, Prudhomme J, Ponts N, Gill SS, Lonardi S, Le Roch KG: DNA-encoded nucleosome occupancy is associated with transcription levels in the human malaria parasite Plasmodium falciparum. BMC Genomics. 2014, 15: 347-353. 10.1186/1471-2164-15-347.
Article
PubMed Central
PubMed
Google Scholar
Cui L, Miao J: Chromatin-mediated epigenetic regulation in the malaria parasite Plasmodium falciparum. Euk Cell. 2010, 9: 1138-1149. 10.1128/EC.00036-10.
Article
CAS
Google Scholar
Duffy MF, Selvarajah SA, Josling GA, Petter M: The role of chromatin in Plasmodium gene expression. Cell Microbiol. 2012, 14: 819-828. 10.1111/j.1462-5822.2012.01777.x.
Article
CAS
PubMed
Google Scholar
Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J, Vert JP, Noble WS, Le Roch KG: Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res. 2014, 24: 974-988. 10.1101/gr.169417.113.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ponts N, Harris EY, Lonardi S, Le Roch KG: Nucleosome occupancy at transcription start sites in the human malaria parasite: a hard-wired evolution of virulence?. Inf Gen Evol. 2011, 11: 716-724. 10.1016/j.meegid.2010.08.002.
Article
CAS
Google Scholar
Horrocks P, Wong E, Russell K, Emes RD: Control of gene expression in Plasmodium falciparum - ten years on. Mol Biochem Parasitol. 2009, 164: 9-25. 10.1016/j.molbiopara.2008.11.010.
Article
CAS
PubMed
Google Scholar
Russell K, Hasenkamp S, Emes R, Horrocks P: Analysis of the spatial and temporal arrangement of transcripts over intergenic regions in the human malarial parasite Plasmodium falciparum. BMC Genomics. 2013, 14: 267-277. 10.1186/1471-2164-14-267.
Article
CAS
PubMed Central
PubMed
Google Scholar
Siegel TN, Hon CC, Zhang Q, Lopez-Rubio JJ, Scheidig-Benatar C, Martins RM, Sismeiro O, Coppee JY, Scherf A: Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in Plasmodium falciparum. BMC Genomics. 2014, 15: 150-159. 10.1186/1471-2164-15-150.
Article
PubMed Central
PubMed
Google Scholar
Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V: Complete genome sequence of the apicomplexan Cryptosporidium parvum. Science. 2004, 304: 441-445. 10.1126/science.1094786.
Article
CAS
PubMed
Google Scholar
Brayton KA, Lau AO, Herndon DR, Hannick L, Kappmeyer LS, Berens SJ, Bidwell SL, Brown WC, Crabtree J, Fadrosh D, Feldblum T, Forberger HA, Haas BJ, Howell JM, Khouri H, Koo H, Mann DJ, Norimine J, Paulsen IT, Radune D, Ren Q, Smith RK, Suarez CE, White O, Wortman JR, Knowles DP, McElwain TF, Nene VM: Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Path. 2007, 3: 1401-1413.
Article
CAS
Google Scholar
Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RM, Crabb BS, Del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kang'a S, Kooij TW, Korsinczky M, Meyer EV, Nene V, Paulsen I, White O, Ralph SA, Ren Q, Sargeant TJ, et al: Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008, 455: 757-763. 10.1038/nature07327.
Article
CAS
PubMed Central
PubMed
Google Scholar
Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RM, Crabb BS, Del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kang'a S, Kooij TW, Korsinczky M, Meyer EV, Nene V, Paulsen I, White O, Ralph SA, Ren Q, Sargeant TJ, et al: Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature. 2002, 419: 512-519. 10.1038/nature01099.
Article
CAS
PubMed
Google Scholar
Gardner MJ, Bishop R, Shah T, de Villiers EP, Carlton JM, Hall N, Ren Q, Paulsen IT, Pain A, Berriman M, Wilson RJ, Sato S, Ralph SA, Mann DJ, Xiong Z, Shallom SJ, Weidman J, Jiang L, Lynn J, Weaver B, Shoaibi A, Domingo AR, Wasawo D, Crabtree J, Wortman JR, Haas B, Angiuoli SV, Creasy TH, Lu C, Suh B, et al: Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science. 2005, 309: 134-137. 10.1126/science.1110439.
Article
CAS
PubMed
Google Scholar
Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, et al: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002, 419: 498-511. 10.1038/nature01097.
Article
CAS
PubMed
Google Scholar
Pain A, Bohme U, Berry AE, Mungall K, Finn RD, Jackson AP, Mourier T, Mistry J, Pasini EM, Aslett MA, Balasubrammaniam S, Borgwardt K, Brooks K, Carret C, Carver TJ, Cherevach I, Chillingworth T, Clark TG, Galinski MR, Hall N, Harper D, Harris D, Hauser H, Ivens A, Janssen CS, Keane T, Larke N, Lapp S, Marti M, Moule S, et al: The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature. 2008, 455: 799-803. 10.1038/nature07306.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pain A, Böhme U, Berry AE, Mungall K, Finn RD, Jackson AP, Mourier T, Mistry J, Pasini EM, Aslett MA, Balasubrammaniam S, Borgwardt K, Brooks K, Carret C, Carver TJ, Cherevach I, Chillingworth T, Clark TG, Galinski MR, Hall N, Harper D, Harris D, Hauser H, Ivens A, Janssen CS, Keane T, Larke N, Lapp S, Marti M, Moule S, et al: Genome of the host-cell transforming parasite Theileria annulata compared with T. parva. Science. 2005, 309: 131-133. 10.1126/science.1110418.
Article
CAS
PubMed
Google Scholar
Reid AJ, Vermont SJ, Cotton JA, Harris D, Hill-Cawthorne GA, Könen-Waisman S, Latham SM, Mourier T, Norton R, Quail MA, Sanders M, Shanmugam D, Sohal A, Wasmuth JD, Brunk B, Grigg ME, Howard JC, Parkinson J, Roos DS, Trees AJ, Berriman M, Pain A, Wastling JM: Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: Coccidia differing in host range and transmission strategy. PLoS Path. 2012, 8: e1002567-10.1371/journal.ppat.1002567.
Article
CAS
Google Scholar
Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA: The genome of Cryptosporidium hominis. Nature. 2004, 431: 1107-1112. 10.1038/nature02977.
Article
CAS
PubMed
Google Scholar
Bizzaro JW, Marx KA: Poly: a quantitative analysis tool for simple sequence repeat (SSR) tracts in DNA. BMC Bioinformatics. 2003, 4: 22-25. 10.1186/1471-2105-4-22.
Article
PubMed Central
PubMed
Google Scholar
Brick K, Watanabe J, Pizzi E: Core promoters are predicted by their distinct physicochemical properties in the genome of Plasmodium falciparum. Genome Biol. 2008, 9 (12): 178-184. 10.1186/gb-2008-9-12-r178.
Article
Google Scholar
Denver DR, Morris K, Kewalramani A, Harris KE, Chow A, Estes S, Lynch M, Thomas WK: Abundance, distribution, and mutation rates of homopolymeric nucleotide runs in the genome of Caenorhabditis elegans. J Mol Evol. 2004, 58: 584-595. 10.1007/s00239-004-2580-4.
Article
CAS
PubMed
Google Scholar
Katti MV, Ranjekar PK, Gupta VS: Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol. 2001, 18: 1161-1167. 10.1093/oxfordjournals.molbev.a003903.
Article
CAS
PubMed
Google Scholar
Toth G, Gaspari Z, Jurka J: Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 2000, 10: 967-981. 10.1101/gr.10.7.967.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hancock JM: The contribution of slippage-like processes to genome evolution. J Mol Evol. 1995, 41: 1038-1047.
Article
CAS
PubMed
Google Scholar
Nadir E, Margalit H, Gallily T, Ben-Sasson SA: Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proc Natl Acad Sci U S A. 1996, 93: 6470-6475. 10.1073/pnas.93.13.6470.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tautz D, Trick M, Dover GA: Cryptic simplicity in DNA is a major source of genetic variation. Nature. 1986, 322: 652-656. 10.1038/322652a0.
Article
CAS
PubMed
Google Scholar
Wilder J, Hollocher H: Mobile elements and the genesis of microsatellites in dipterans. Mol Biol Evol. 2001, 18: 384-392. 10.1093/oxfordjournals.molbev.a003814.
Article
CAS
PubMed
Google Scholar
DeBarry JD, Kissinger JC: Jumbled genomes: missing Apicomplexan synteny. Mol Biol Evol. 2011, 28: 2855-2871. 10.1093/molbev/msr103.
Article
CAS
PubMed Central
PubMed
Google Scholar
Durand PM, Oelofse AJ, Coetzer TL: An analysis of mobile genetic elements in three Plasmodium species and their potential impact on the nucleotide composition of the P. falciparum genome. BMC Genomics. 2006, 7: 282-287. 10.1186/1471-2164-7-282.
Article
PubMed Central
PubMed
Google Scholar
Roy SW, Hartl DL: Very little intron loss/gain in Plasmodium: intron loss/gain mutation rates and intron number. Genome Res. 2006, 16: 750-756. 10.1101/gr.4845406.
Article
CAS
PubMed Central
PubMed
Google Scholar
Roy SW, Penny D: Large-scale intron conservation and order-of-magnitude variation in intron loss/gain rates in apicomplexan evolution. Genome Res. 2006, 16: 1270-1275. 10.1101/gr.5410606.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chang GS, Noegel AA, Mavrich TN, Müller R, Tomsho L, Ward E, Felder M, Jiang C, Eichinger L, Glockner G, Glöckner G, Schuster SC, Pugh BF: Unusual combinatorial involvement of poly-A/T tracts in organizing genes and chromatin in Dictyostelium. Genome Res. 2012, 22: 1098-1106. 10.1101/gr.131649.111.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sims JS, Militello KT, Sims PA, Patel VP, Kasper JM, Wirth DF: Patterns of gene-specific and total transcriptional activity during the Plasmodium falciparum intraerythrocytic developmental cycle. Euk Cell. 2009, 8 (3): 327-338. 10.1128/EC.00340-08.
Article
CAS
Google Scholar
Gopalakrishnan AM, Nyindodo LA, Ross Fergus M, Lopez-Estrano C: Plasmodium falciparum: preinitiation complex occupancy of active and inactive promoters during erythrocytic stage. Exp Parasitol. 2009, 121: 46-54. 10.1016/j.exppara.2008.09.016.
Article
CAS
PubMed
Google Scholar
Kishore SP, Perkins SL, Templeton TJ, Deitsch KW: An unusual recent expansion of the C-terminal domain of RNA polymerase II in primate malaria parasites features a motif otherwise found only in mammalian polymerases. J Mol Evol. 2009, 68: 706-714. 10.1007/s00239-009-9245-2.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bartfai R, Hoeijmakers WA, Salcedo-Amaya AM, Smits AH, Janssen-Megens E, Kaan A, Treeck M, Gilberger TW, Francoijs KJ, Stunnenberg HG: H2A.Z demarcates intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Path. 2010, 6 (12): e1001223-10.1371/journal.ppat.1001223.
Article
CAS
Google Scholar
Depledge DP, Lower RP, Smith DF: RepSeq-a database of amino acid repeats present in lower eukaryotic pathogens. BMC Bioinformatics. 2007, 8: 122-127. 10.1186/1471-2105-8-122.
Article
PubMed Central
PubMed
Google Scholar
Frugier M, Bour T, Ayach M, Santos MA, Rudinger-Thirion J, Theobald-Dietrich A, Pizzi E: Low Complexity Regions behave as tRNA sponges to help co-translational folding of plasmodial proteins. FEBS Lett. 2010, 584: 448-454. 10.1016/j.febslet.2009.11.004.
Article
CAS
PubMed
Google Scholar
Pizzi E, Frontali C: Divergence of noncoding sequences and of insertions encoding nonglobular domains at a genomic region well conserved in plasmodia. J Mol Evol. 2000, 50: 474-480.
CAS
PubMed
Google Scholar
Pizzi E, Frontali C: Low-complexity regions in Plasmodium falciparum proteins. Genome Res. 2001, 11: 218-229. 10.1101/gr.GR-1522R.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zilversmit MM, Volkman SK, DePristo MA, Wirth DF, Awadalla P, Hartl DL: Low-complexity regions in Plasmodium falciparum: missing links in the evolution of an extreme genome. Mol Biol Evol. 2010, 27: 2198-2209. 10.1093/molbev/msq108.
Article
CAS
PubMed Central
PubMed
Google Scholar
Carter R, Nijhout MM: Control of gamete formation (exflagellation) in malaria parasites. Science. 1977, 195: 407-409. 10.1126/science.12566.
Article
CAS
PubMed
Google Scholar
Janse CJ, van der Klooster PF, van der Kaay HJ, van der Ploeg M, Overdulve JP: DNA synthesis in Plasmodium berghei during asexual and sexual development. Mol Biochem Parasitol. 1986, 20: 173-182. 10.1016/0166-6851(86)90029-0.
Article
CAS
PubMed
Google Scholar
Janse CJ, Van der Klooster PF, Van der Kaay HJ, Van der Ploeg M, Overdulve JP: Rapid repeated DNA replication during microgametogenesis and DNA synthesis in young zygotes of Plasmodium berghei. Trans Roy Soc Trop Med Hyg. 1986, 80: 154-157. 10.1016/0035-9203(86)90219-1.
Article
CAS
PubMed
Google Scholar
Schmitt MW, Venkatesan RN, Pillaire MJ, Hoffmann JS, Sidorova JM, Loeb LA: Active site mutations in mammalian DNA polymerase delta alter accuracy and replication fork progression. J Biol Chem. 2010, 285: 32264-32272. 10.1074/jbc.M110.147017.
Article
CAS
PubMed Central
PubMed
Google Scholar