Sagan L: On the origin of mitosing cells. J Theor Biol. 1967, 14: 225-274. 10.1016/0022-5193(67)90079-3.
CAS
Google Scholar
Gonzalez A, Clemente JC, Shade A, Metcalf JL, Song S, Prithiviraj B, Palmer BE, Knight R: Our microbial selves: what ecology can teach us. EMBO Rep. 2011, 12: 775-784. 10.1038/embor.2011.137.
CAS
PubMed Central
PubMed
Google Scholar
Dilworth MJ, James EK, Sprent JI: Nitrogen-Fixing Leguminous Symbioses. 2008, Kluwer Academic Pub
Google Scholar
Clark EL, Karley AJ, Hubbard SF: Insect endosymbionts: manipulators of insect herbivore trophic interactions?. Protoplasma. 2010, 244: 25-51. 10.1007/s00709-010-0156-2.
PubMed
Google Scholar
Cavanaugh CM, McKiness Z, Newton I, Stewart FJ: Marine chemosynthetic symbioses. The Prokaryotes - Prokaryotic Biology and Symbiotic Associations. Edited by: Rosenberg E. 2013, 579-607. 3
Google Scholar
Toft C, Andersson SGE: Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet. 2010, 11: 465-475.
CAS
PubMed
Google Scholar
Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A, Schackwitz W, Lapidus A, Wu D, McCutcheon JP, McDonald BR, Moran NA, Bristow J, Cheng J-F: One bacterial cell, one complete genome. PLoS One. 2010, 5: 1-8.
Google Scholar
Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K, Woyke T, Hentschel U: Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J. 2013, 7: 2287-2300. 10.1038/ismej.2013.111.
CAS
PubMed Central
PubMed
Google Scholar
Dubilier N, Bergin C, Lott C: Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Micro. 2008, 6: 725-740. 10.1038/nrmicro1992.
CAS
Google Scholar
Cavanaugh CM: Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature. 1983, 302: 58-61. 10.1038/302058a0.
CAS
Google Scholar
Eisen JA, Smith SW, Cavanaugh CM: Phylogenetic relationships of chemoautotrophic bacterial symbionts of Solemya velum say (Mollusca: Bivalvia) determined by 16S rRNA gene sequence analysis. J Bacteriol. 1992, 174: 3416-3421.
CAS
PubMed Central
PubMed
Google Scholar
Cavanaugh CM, Abbott M, Veenhuis M: Immunochemical localization of ribulose-1, 5-bisphosphate carboxylase in the symbiont-containing gills of Solemya velum (Bivalvia: Mollusca). P Natl Acad Sci USA. 1988, 85: 7786-7789. 10.1073/pnas.85.20.7786.
CAS
Google Scholar
Scott KM, Cavanaugh CM: CO2 uptake and fixation by endosymbiotic chemoautotrophs from the bivalve Solemya velum. Appl Environ Microb. 2007, 73: 1174-1179. 10.1128/AEM.01817-06.
CAS
Google Scholar
Conway N, Capuzzo J, Fry B: The role of endosymbiotic bacteria in the nutrition of Solemya velum: evidence from a stable isotope analysis of endosymbionts and host. Limnol Oceanogr. 1989, 34: 249-255. 10.4319/lo.1989.34.1.0249.
CAS
Google Scholar
Krueger DM, Gallager S, Cavanaugh CM: Suspension feeding on phytoplankton by Solemya velum, a symbiont-containing clam. Mar Ecol-Prog Ser. 1992, 86: 145-151.
Google Scholar
Cary SC: Vertical transmission of a chemoautotrophic symbiont in the protobranch bivalve, Solemya reidi. Mol Mar Biol Biotechnol. 1994, 3: 121-130.
CAS
PubMed
Google Scholar
Krueger DM, Gustafson RG, Cavanaugh CM: Vertical transmission of chemoautotrophic symbionts in the bivalve Solemya velum (Bivalvia: Protobranchia). Biol Bull. 1996, 190: 195-202. 10.2307/1542539.
CAS
PubMed
Google Scholar
Peek A, Vrijenhoek R, Gaut B: Accelerated evolutionary rate in sulfur-oxidizing endosymbiotic bacteria associated with the mode of symbiont transmission. Mol Biol Evol. 1998, 15: 1514-10.1093/oxfordjournals.molbev.a025879.
CAS
PubMed
Google Scholar
Hurtado LA, Mateos M, Lutz RA, Vrijenhoek RC: Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica. Appl Environ Microb. 2003, 69: 2058-2064. 10.1128/AEM.69.4.2058-2064.2003.
CAS
Google Scholar
Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S, Harada M, Matsuyama K, Takishita K, Kawato M, Uematsu K: Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii. Curr Biol. 2007, 17: 881-886. 10.1016/j.cub.2007.04.039.
CAS
PubMed
Google Scholar
Kuwahara H, Takaki Y, Yoshida T, Shimamura S, Takishita K, Reimer JD, Kato C, Maruyama T: Reductive genome evolution in chemoautotrophic intracellular symbionts of deep-sea Calyptogena clams. Extremophiles. 2008, 12: 365-374. 10.1007/s00792-008-0141-2.
CAS
PubMed
Google Scholar
Newton I, Woyke T, Auchtung T, Dilly G, Dutton R, Fisher M, Fontanez K, Lau E, Stewart FJ, Richardson P: The Calyptogena magnifica chemoautotrophic symbiont genome. Science. 2007, 315: 998-1000. 10.1126/science.1138438.
CAS
PubMed
Google Scholar
Newton I, Girguis PR, Cavanaugh CM: Comparative genomics of vesicomyid clam (Bivalvia: Mollusca) chemosynthetic symbionts. BMC Genomics. 2008, 9: 585-10.1186/1471-2164-9-585.
PubMed Central
PubMed
Google Scholar
Peek A, Feldman R, Lutz R, Vrijenhoek R: Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc Natl Acad Sci U S A. 1998, 95: 9962-10.1073/pnas.95.17.9962.
CAS
PubMed Central
PubMed
Google Scholar
Stewart FJ, Young CR, Cavanaugh CM: Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis. Mol Biol Evol. 2008, 25: 673-687. 10.1093/molbev/msn010.
CAS
PubMed
Google Scholar
Stewart FJ, Young C, Cavanaugh CM: Evidence for homologous recombination in intracellular chemosynthetic clam symbionts. Mol Biol Evol. 2009, 26: 1391-1404. 10.1093/molbev/msp049.
CAS
PubMed
Google Scholar
Stewart FJ, Baik AHY, Cavanaugh CM: Genetic subdivision of chemosynthetic endosymbionts of Solemya velum along the Southern New England coast. Appl Environ Microb. 2009, 75: 6005-6007. 10.1128/AEM.00689-09.
CAS
Google Scholar
Krueger DM, Cavanaugh CM: Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes. Appl Environ Microb. 1997, 63: 91-
CAS
Google Scholar
Moran NA: Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A. 1996, 93: 2873-2878. 10.1073/pnas.93.7.2873.
CAS
PubMed Central
PubMed
Google Scholar
Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O’Neill SL, Eisen JA: Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2004, 2: E69-10.1371/journal.pbio.0020069.
PubMed Central
PubMed
Google Scholar
Robidart J, Bench S, Feldman R, Novoradovsky A, Podell S, Gaasterland T, Allen E, Felbeck H: Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol. 2008, 10: 727-737. 10.1111/j.1462-2920.2007.01496.x.
CAS
PubMed
Google Scholar
Gardebrecht A, Markert S, Sievert SM, Felbeck H, Thürmer A, Albrecht D, Wollherr A, Kabisch J, Le Bris N, Lehmann R, Daniel R, Liesegang H, Hecker M, Schweder T: Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. ISME J. 2012, 6: 766-776. 10.1038/ismej.2011.137.
CAS
PubMed Central
PubMed
Google Scholar
Nakagawa S, Shimamura S, Takaki Y, Suzuki Y, Murakami S-I, Watanabe T, Fujiyoshi S, Mino S, Sawabe T, Maeda T, Makita H, Nemoto S, Nishimura S-I, Watanabe H, Watsuji T-O, Takai K: Allying with armored snails: the complete genome of gammaproteobacterial endosymbiont. ISME J. 2014, 8: 40-51. 10.1038/ismej.2013.131.
CAS
PubMed Central
PubMed
Google Scholar
Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, Szeto E, Kyrpides NC, Mussmann M, Amann R, Bergin C, Ruehland C, Rubin EM, Dubilier N: Symbiosis insights through metagenomic analysis of a microbial consortium. Nature. 2006, 443: 950-955. 10.1038/nature05192.
CAS
PubMed
Google Scholar
Wu M, Eisen JA: A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 2008, 9: 1-11.
Google Scholar
Murphy FV, Ramakrishnan V: Structure of a purine-purine wobble base pair in the decoding center of the ribosome. Nat Struct Mol Biol. 2004, 11: 11251-11252.
Google Scholar
Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science. 1997, 278: 631-637. 10.1126/science.278.5338.631.
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410. 10.1016/S0022-2836(05)80360-2.
CAS
PubMed
Google Scholar
Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC: Integrative analysis of environmental sequences using MEGAN4. Genome Res. 2011, 21: 1552-1560. 10.1101/gr.120618.111.
CAS
PubMed Central
PubMed
Google Scholar
Stewart FJ, Dmytrenko O, DeLong E: Metatranscriptomic analysis of sulfur oxidation genes in the endosymbiont of Solemya velum. Frontiers Microbiol. 2011, 2: 1-10.
Google Scholar
Frigaard N-U, Dahl C: Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol. 2009, 54: 103-200.
CAS
PubMed
Google Scholar
Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ, Tringe SG, Tortell PD, Hallam SJ: Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science. 2009, 326: 578-582. 10.1126/science.1175309.
CAS
PubMed
Google Scholar
Dahl C, Prange A: Bacterial sulfur globules: occurrence, structure and metabolism. Inclusions in Prokaryotes Microbiology Monographs, Volume 1. 2006, 21-51.
Google Scholar
Friedrich C, Bardischewsky F, Rother D, Quentmeier A, Fischer J: Prokaryotic sulfur oxidation. Curr Opin Microbiol. 2005, 8: 253-259. 10.1016/j.mib.2005.04.005.
CAS
PubMed
Google Scholar
Fisher C, Childress J, ARP A, BROOKS J, DISTEL D, Favuzzi J, Macko S, Newton A, Powell M, Somero G, SOTO T: Physiology, morphology, and biochemical composition of Riftia pachyptila at Rose Garden in 1985. Deep-Sea Res. 1988, 35: 1745-1758. 10.1016/0198-0149(88)90047-7.
Google Scholar
Vetter RD: Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar Biol. 1985, 88: 33-42. 10.1007/BF00393041.
CAS
Google Scholar
Childress JJ, Girguis PR: The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J Exp Biol. 2011, 214: 312-325. 10.1242/jeb.049023.
CAS
PubMed
Google Scholar
Cort JR, Selan U, Schulte A, Grimm F, Kennedy MA, Dahl C: Allochromatium vinosum DsrC: Solution-state NMR structure, redox properties, and interaction with DsrEFH, a protein essential for purple sulfur bacterial sulfur oxidation. J Mol Biol. 2008, 382: 692-707. 10.1016/j.jmb.2008.07.022.
CAS
PubMed Central
PubMed
Google Scholar
Oliveira TF, Vonrhein C, Matias PM, Venceslau SS, Pereira IAC, Archer M: Purification, crystallization and preliminary crystallographic analysis of a dissimilatory DsrAB sulfite reductase in complex with DsrC. J Struct Biol. 2008, 164: 236-239. 10.1016/j.jsb.2008.07.007.
CAS
PubMed
Google Scholar
Ghosh W, Dam B: Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. Fems Microbiol Rev. 2009, 33: 999-1043. 10.1111/j.1574-6976.2009.00187.x.
CAS
PubMed
Google Scholar
Chen C, Rabourdin B, Hammen C: The effect of hydrogen sulfide on the metabolism of Solemya velum and enzymes of sulfide oxidation in gill tissue. Comp Biochem Physiol B Biochem Mol Biol. 1987, 88: 949-952. 10.1016/0305-0491(87)90269-0.
Google Scholar
Biegel E, Schmidt S, González JM, Müller V: Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci. 2011, 68: 613-634. 10.1007/s00018-010-0555-8.
CAS
PubMed
Google Scholar
Bruschi M, Guerlesquin F: Structure, function and evolution of bacterial ferredoxins. Fems Microbiol Rev. 1988, 4: 155-175.
CAS
PubMed
Google Scholar
Kovács KL, Kovács AT, Maróti G, Mészáros LS, Balogh J, Latinovics D, Fülöp A, Dávid R, Dorogházi E, Rákhely G: The hydrogenases of Thiocapsa roseopersicina. Biochem Soc Trans. 2005, 33: 61-63. 10.1042/BST0330061.
PubMed
Google Scholar
Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones A, Albracht S, Friedrich B: [NiFe]-hydrogenases of Ralstonia eutropha H16: Modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microb Biotech. 2005, 10: 181-196. 10.1159/000091564.
CAS
Google Scholar
Vignais PM, Billoud B: Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev. 2007, 107: 4206-4272. 10.1021/cr050196r.
CAS
PubMed
Google Scholar
Maroti J, Farkas A, Nagy IK, Maroti G, Kondorosi E, Rakhely G, Kovacs KL: A second soluble hox-type nife enzyme completes the hydrogenase set in Thiocapsa roseopersicina BBS. Appl Environ Microbiol. 2010, 76: 5113-5123. 10.1128/AEM.00351-10.
CAS
PubMed Central
PubMed
Google Scholar
Petersen JM, Zielinski FU, Pape T, Seifert R, Moraru C, Amann R, Hourdez S, Girguis PR, Wankel SD, Barbe V, Pelletier E, Fink D, Borowski C, Bach W, Dubilier N: Hydrogen is an energy source for hydrothermal vent symbioses. Nature. 2011, 476: 176-180. 10.1038/nature10325.
CAS
PubMed
Google Scholar
Bogachev AV, Verkhovsky MI: Na+-translocating NADH: quinone oxidoreductase: progress achieved and prospects of investigations. Biochem (Moscow). 2005, 70: 143-149. 10.1007/s10541-005-0093-4.
CAS
Google Scholar
Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H: Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 2000, 407: 81-86. 10.1038/35024074.
CAS
PubMed
Google Scholar
Pickering BS, Oresnik IJ: Formate-dependent autotrophic growth in Sinorhizobium meliloti. J Bacteriol. 2008, 190: 6409-10.1128/JB.00757-08.
CAS
PubMed Central
PubMed
Google Scholar
Benoit S, Abaibou H, Mandrand-Berthelot M-A: Topological analysis of the aerobic membrane-bound formate dehydrogenase of Escherichia coli. J Bacteriol. 1998, 180: 6625-
CAS
PubMed Central
PubMed
Google Scholar
Preisig O, Zufferey R, Thony-Meyer L, Appleby C, Hennecke H: A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis- specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol. 1996, 178: 1532-
CAS
PubMed Central
PubMed
Google Scholar
Pitcher RS, Watmough NJ: The bacterial cytochrome cbb3 oxidases. Biochim Biophys Acta Bioenerg. 2004, 1655: 388-399.
CAS
Google Scholar
Nunoura T, Sako Y, Wakagi T, Uchida A: Regulation of the aerobic respiratory chain in the facultatively aerobic and hyperthermophilic archaeon Pyrobaculum oguniense. Microbiol (Reading, Engl). 2003, 149: 673-688. 10.1099/mic.0.26000-0.
CAS
Google Scholar
Otten MF, Stork DM, Reijnders WN, Westerhoff HV, Van Spanning RJ: Regulation of expression of terminal oxidases in Paracoccus denitrificans. Eur J Biochem. 2001, 268: 2486-2497. 10.1046/j.1432-1327.2001.02131.x.
CAS
PubMed
Google Scholar
Krueger DM, Roeselers G, Sigman D, Cavanaugh CM: Nitrogen nutrition in the symbiosis Solemya velum. in preparation
Potter LC, Millington P, Griffiths L, Thomas GH, Cole JA: Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth?. Biochem J. 1999, 344 (Pt 1): 77-84.
CAS
PubMed Central
PubMed
Google Scholar
Zemmelink H, Houghton L, Sievert S, Frew N, Dacey J: Gradients in dimethylsuffide, dimethylsulfoniopropionate, dimethylsulfoxide, and bacteria near the sea surface. Mar Ecol-Prog Ser. 2005, 295: 33-42.
CAS
Google Scholar
Mussmann M, Hu FZ, Richter M, de Beer D, Preisler A, Jorgensen BB, Huntemann M, Gloeckner FO, Amann R, Koopman WJH, Lasken RS, Janto B, Hogg J, Stoodley P, Boissy R, Ehrlich GD: Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol. 2007, 5: 1923-1937.
CAS
Google Scholar
McCrindle SL, Kappler U, McEwan AG: Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv Microb Physiol. 2005, 50: 147-198.
CAS
PubMed
Google Scholar
Häse CC, Fedorova ND, Galperin MY, Dibrov PA: Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev. 2001, 65: 353-370. 10.1128/MMBR.65.3.353-370.2001. table of contents
PubMed Central
PubMed
Google Scholar
Mulkidjanian AY, Dibrov P, Galperin MY: The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta. 2008, 1777: 985-992. 10.1016/j.bbabio.2008.04.028.
CAS
PubMed Central
PubMed
Google Scholar
Robinson J, Cavanaugh CM: Expression of form I and form II Rubisco in chemoautotrophic symbioses: implications for the interpretation of stable carbon isotope values. Limnol Oceanogr. 1995, 40: 1496-1502. 10.4319/lo.1995.40.8.1496.
CAS
Google Scholar
Reshetnikov AS, Rozova ON, Khmelenina VN, Mustakhimov II, Beschastny AP, Murrell JC, Trotsenko YA: Characterization of the pyrophosphate-dependent 6-phosphofructokinase from Methylococcus capsulatus Bath. FEMS Microbiol Lett. 2008, 288: 202-210. 10.1111/j.1574-6968.2008.01366.x.
CAS
PubMed
Google Scholar
Markert S, Gardebrecht A, Felbeck H, Sievert SM, Klose J, Becher D, Albrecht D, Thürmer A, Daniel R, Kleiner M, Hecker M, Schweder T: Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Proteomics. 2011, 11: 3106-3117. 10.1002/pmic.201100059.
CAS
PubMed
Google Scholar
Kleiner M, Wentrup C, Lott C, Teeling H, Wetzel S, Young J, Chang Y-J, Shah M, VerBerkmoes NC, Zarzycki J, Fuchs G, Markert S, Hempel K, Voigt B, Becher D, Liebeke M, Lalk M, Albrecht D, Hecker M, Schweder T, Dubilier N: Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc Natl Acad Sci. 2012, 109: E1173-E1182. 10.1073/pnas.1121198109.
CAS
PubMed Central
PubMed
Google Scholar
Bassham J, Benson A, Calvin M: The path of carbon in photosynthesis. J Biol Chem. 1950, 185: 781-787.
CAS
PubMed
Google Scholar
Fenton A, Paricharttanakul N, Reinhart G: Identification of substrate contact residues important for the allosteric regulation of phosphofructokinase from Eschericia coli. Biochemistry. 2003, 42: 6453-6459. 10.1021/bi034273t.
CAS
PubMed
Google Scholar
Purves J, Cockayne A, Moody PCE, Morrissey JA: Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues gapA and gapB in Staphylococcus aureus. Infect Immun. 2010, 78: 5223-5232. 10.1128/IAI.00762-10.
CAS
PubMed Central
PubMed
Google Scholar
Wood AP, Aurikko JP, Kelly DP: A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy?. Fems Microbiol Rev. 2004, 28: 335-352. 10.1016/j.femsre.2003.12.001.
CAS
PubMed
Google Scholar
Han SO, Inui M, Yukawa H: Effect of carbon source availability and growth phase on expression of Corynebacterium glutamicum genes involved in the tricarboxylic acid cycle and glyoxylate bypass. Microbiology. 2008, 154: 3073-3083. 10.1099/mic.0.2008/019828-0.
CAS
PubMed
Google Scholar
Lee R, Thuesen E, Childress J: Ammonium and free amino acids as nitrogen sources for the chemoautotrophic symbiosis Solemya reidi Bernard (Bivalvia: Protobranchia). J Exp Mar Biol Ecol. 1992, 158: 75-91. 10.1016/0022-0981(92)90309-X.
CAS
Google Scholar
Liao L, Wankel SD, Wu M, Cavanaugh CM, Girguis PR: Characterizing the plasticity of nitrogen metabolism by the host and symbionts of the hydrothermal vent chemoautotrophic symbioses Ridgeia piscesae. Mol Ecol. 2013
Google Scholar
Lee RW, Childress JJ: Assimilation of inorganic nitrogen by marine invertebrates and their chemoautotrophic and methanotrophic symbionts. Appl Environ Microb. 1994, 60: 1852-1858.
CAS
Google Scholar
Bourbonnais A, Lehmann MF, Butterfield DA, Juniper SK: Subseafloor nitrogen transformations in diffuse hydrothermal vent fluids of the Juan de Fuca Ridge evidenced by the isotopic composition of nitrate and ammonium. Geochem Geophys Geosyst. 2012, 13: 1-23. 10.1029/2011GC003955.
Google Scholar
Hentschel U, Felbeck H: Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila. Nature. 1993, 366: 338-340. 10.1038/366338a0.
CAS
Google Scholar
Lee R, Robinson J, Cavanaugh CM: Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase. J Exp Biol. 1999, 202 (Pt 3): 289-300.
CAS
PubMed
Google Scholar
Girguis PR, Lee RW, Desaulniers N, Childress JJ, Pospesel M, Felbeck H, Zal F: Fate of nitrate acquired by the tubeworm Riftia pachyptila. Appl Environ Microbiol. 2000, 66: 2783-2790. 10.1128/AEM.66.7.2783-2790.2000.
CAS
PubMed Central
PubMed
Google Scholar
Beckers G, Bendt AK, Kramer R, Burkovski A: Molecular identification of the urea uptake system and transcriptional analysis of urea transporter and urease-encoding genes in Corynebacterium glutamicum. J Bacteriol. 2004, 186: 7645-10.1128/JB.186.22.7645-7652.2004.
CAS
PubMed Central
PubMed
Google Scholar
De Cian M, Regnault M, Lallier FH: Nitrogen metabolites and related enzymatic activities in the body fluids and tissues of the hydrothermal vent tubeworm Riftia pachyptila. J Exp Biol. 2000, 203: 2907-2920.
CAS
PubMed
Google Scholar
Joyner JL, Peyer SM, Lee RW: Possible roles of sulfur-containing amino acids in a chemoautotrophic bacterium-mollusc symbiosis. Biol Bull. 2003, 205: 331-338. 10.2307/1543296.
CAS
PubMed
Google Scholar
Conway N, Howes B, McDowell Capuzzo J, Turner R, Cavanaugh CM: Characterization and site description of Solemya borealis (Bivalvia; Solemyidae), another bivalve-bacteria symbiosis. Mar Biol. 1992, 112: 601-613. 10.1007/BF00346178.
Google Scholar
Eichhorn E, van der Ploeg JR, Kertesz MA, Leisinger T: Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J Biol Chem. 1997, 272: 23031-23036. 10.1074/jbc.272.37.23031.
CAS
PubMed
Google Scholar
Conway N, McDowell Capuzzo J: Incorporation and utilization of bacterial lipids in the Solemya velum symbiosis. Mar Biol. 1991, 108: 277-291. 10.1007/BF01344343.
CAS
Google Scholar
Karow M, Georgopoulos C: Isolation and characterization of the Escherichia coli msbB gene, a multicopy suppressor of null mutations in the high-temperature requirement gene htrB. J Bacteriol. 1992, 174: 702-710.
CAS
PubMed Central
PubMed
Google Scholar
Moran N, McCutcheon J, Nakabachi A: Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008, 42: 165-190. 10.1146/annurev.genet.41.110306.130119.
CAS
PubMed
Google Scholar
Nussbaumer AD, Fisher CR, Bright M: Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature. 2006, 441: 345-348. 10.1038/nature04793.
CAS
PubMed
Google Scholar
Cavanaugh CM: Symbiosis of chemoautotrophic bacteria and marine invertebrates. PhD Thesis. 1985, Cambridge, MA, USA: Harvard University, Department of Organismic and Evolutionary Biology
Google Scholar
Fisher C, Childress J: Organic carbon transfer from methanotrophic symbionts to the host hydrocarbon-seep mussel. Symbiosis. 1992, 12: 221-235.
Google Scholar
Saurin W, Hofnung M, Dassa E: Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol. 1999, 48: 22-41. 10.1007/PL00006442.
CAS
PubMed
Google Scholar
van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H: Plant peptides govern terminal differentiation of bacteria in symbiosis. Science. 2010, 327: 1122-1125. 10.1126/science.1184057.
CAS
PubMed
Google Scholar
Paau AS, Bloch CB, Brill WJ: Developmental fate of Rhizobium meliloti bacteroids in alfalfa nodules. J Bacteriol. 1980, 143: 1480-1490.
CAS
PubMed Central
PubMed
Google Scholar
Stewart FJ, Cavanaugh CM: Bacterial endosymbioses in Solemya (Mollusca: Bivalvia)—model systems for studies of symbiont–host adaptation. Antonie Van Leeuwenhoek. 2006, 90: 343-360. 10.1007/s10482-006-9086-6.
PubMed
Google Scholar
Whitchurch CB, Leech AJ, Young MD, Kennedy D, Sargent JL, Bertrand JJ, Semmler ABT, Mellick AS, Martin PR, Alm RA, Hobbs M, Beatson SA, Huang B, Nguyen L, Commolli JC, Engel JN, Darzins A, Mattick JS: Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Mol Microbiol. 2004, 52: 873-893. 10.1111/j.1365-2958.2004.04026.x.
CAS
PubMed
Google Scholar
Newton ILG, Bordenstein SR: Correlations between bacterial ecology and mobile DNA. Curr Microbiol. 2011, 62: 198-208. 10.1007/s00284-010-9693-3.
CAS
PubMed Central
PubMed
Google Scholar
Plague GR, Dunbar HE, Tran PL, Moran NA: Extensive proliferation of transposable elements in heritable bacterial symbionts. J Bacteriol. 2008, 190: 777-779. 10.1128/JB.01082-07.
CAS
PubMed Central
PubMed
Google Scholar
Gil R, Latorre A, Moya A: Evolution of prokaryote-animal symbiosis from a genomics perspective. Microbiology Monographs, Volume 19. 2010, Berlin, Heidelberg: Springer Berlin Heidelberg, 207-233.
Google Scholar
Cordaux R, Pichon S, Ling A, Pérez P, Delaunay C, Vavre F, Bouchon D, Grève P: Intense transpositional activity of insertion sequences in an ancient obligate endosymbiont. Mol Biol Evol. 2008, 25: 1889-1896. 10.1093/molbev/msn134.
CAS
PubMed Central
PubMed
Google Scholar
Chafee ME, Funk DJ, Harrison RG, Bordenstein SR: Lateral phage transfer in obligate intracellular bacteria (wolbachia): verification from natural populations. Mol Biol Evol. 2010, 27: 501-505. 10.1093/molbev/msp275.
CAS
PubMed Central
PubMed
Google Scholar
Roeselers G, Newton ILG: On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves. Appl Microbiol Biotechnol. 2012, 94: 1-10. 10.1007/s00253-011-3819-9.
CAS
PubMed Central
PubMed
Google Scholar
Gil R, Sabater-Muñoz B, Latorre A, Silva FJ, Moya A: Extreme genome reduction in Buchnera spp.: toward the minimal genome needed for symbiotic life. Proc Natl Acad Sci U S A. 2002, 99: 4454-4458. 10.1073/pnas.062067299.
CAS
PubMed Central
PubMed
Google Scholar
Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA: Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 2006, 4: 1079-1092.
CAS
Google Scholar
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, et al: Real-time DNA sequencing from single polymerase molecules. Science. 2009, 323: 133-138. 10.1126/science.1162986.
CAS
PubMed
Google Scholar
Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Phillippy AM: Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 2012
Google Scholar
Pacific Biosciences. [http://www.pacb.com]
English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC, Gibbs RA: Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology. PLoS ONE. 2012, 7: e47768-10.1371/journal.pone.0047768.
CAS
PubMed Central
PubMed
Google Scholar
Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007, 23: 673-679. 10.1093/bioinformatics/btm009.
CAS
PubMed Central
PubMed
Google Scholar
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010, 11: 1-11. 10.1186/1471-2105-11-1.
Google Scholar
Besemer J, Lomsadze A, Borodovsky M: GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001, 29: 2607-10.1093/nar/29.12.2607.
CAS
PubMed Central
PubMed
Google Scholar
Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH: UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics. 2007, 23: 1282-1288. 10.1093/bioinformatics/btm098.
CAS
PubMed
Google Scholar
Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I: RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res. 2014, 42: D553-D559. 10.1093/nar/gkt1274.
CAS
PubMed Central
PubMed
Google Scholar
Wilke A, Harrison T, Wilkening J, Field D, Glass EM, Kyrpides N, Mavrommatis K, Meyer F: The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinformatics. 2012, 13: 1-5. 10.1186/1471-2105-13-1.
Google Scholar
Standard operating procedure for the annotations of genomes and metagenomes submitted to the integrated microbial genomes expert review (IMG-ER) system. [http://img.jgi.doe.gov/w/doc/img_er_ann.pdf]
Gao F, Zhang C-T, Ori-Finder: A web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinformatics. 2009, 9: 1-6.
Google Scholar
Bprom. [http://www.softberry.com]
Emanuelsson O, Brunak S, von Heijne G, Nielsen H: Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007, 2: 953-971. 10.1038/nprot.2007.131.
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23: 2947-2948. 10.1093/bioinformatics/btm404.
CAS
PubMed
Google Scholar
Robinson DG, Lee M-C, Marx CJ: OASIS: an automated program for global investigation of bacterial and archaeal insertion sequences. Nucleic Acids Res. 2012, 40: e174-10.1093/nar/gks778.
CAS
PubMed Central
PubMed
Google Scholar
Bi D, Xu Z, Harrison EM, Tai C, Wei Y, He X, Jia S, Deng Z, Rajakumar K, Ou H-Y: ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res. 2012, 40 (Database issue): D621-D626.
CAS
PubMed Central
PubMed
Google Scholar
Leplae R, Lima-Mendez G, Toussaint A: ACLAME: a CLAssification of Mobile genetic Elements, update 2010. Nucleic Acids Res. 2010, 38 (Database issue): D57-D61.
CAS
PubMed Central
PubMed
Google Scholar