Nanci A: Ten Cate’s Oral Histology Development, Structure and Function. 2008, St Louis, Missouri: Mosby Elsevier, 7
Google Scholar
Gadhia K, McDonald S, Arkutu N, Malik K: Amelogenesis imperfecta: an introduction. Br Dent J. 2012, 212 (8): 377-379. 10.1038/sj.bdj.2012.314.
Article
CAS
PubMed
Google Scholar
Hu JC, Chun YH, Al Hazzazzi T, Simmer JP: Enamel formation and amelogenesis imperfecta. Cells Tissues Organs. 2007, 186 (1): 78-85. 10.1159/000102683.
Article
PubMed
Google Scholar
Stephanopoulos G, Garefalaki ME, Lyroudia K: Genes and related proteins involved in amelogenesis imperfecta. J Dent Res. 2005, 84 (12): 1117-1126. 10.1177/154405910508401206.
Article
CAS
PubMed
Google Scholar
Wright JT: The molecular etiologies and associated phenotypes of amelogenesis imperfecta. Am J Med Genet Part A. 2006, 140 (23): 2547-2555.
Article
PubMed Central
PubMed
Google Scholar
Wright JT, Torain M, Long K, Seow K, Crawford P, Aldred MJ, Hart PS, Hart TC: Amelogenesis imperfecta: genotype-phenotype studies in 71 families. Cells Tissues Organs. 2011, 194 (2–4): 279-283.
Article
PubMed Central
PubMed
Google Scholar
Cao H, Wang J, Li X, Florez S, Huang Z, Venugopalan SR, Elangovan S, Skobe Z, Margolis HC, Martin JF, Amendt BA: MicroRNAs play a critical role in tooth development. J Dent Res. 2010, 89 (8): 779-784. 10.1177/0022034510369304.
Article
CAS
PubMed Central
PubMed
Google Scholar
Michon F, Tummers M, Kyyronen M, Frilander MJ, Thesleff I: Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs. Dev Biol. 2010, 340 (2): 355-368. 10.1016/j.ydbio.2010.01.019.
Article
CAS
PubMed
Google Scholar
Wan M, Gao B, Sun F, Tang Y, Ye L, Fan Y, Klein OD, Zhou X, Zheng L: microRNA miR-34a regulates cytodifferentiation and targets multi-signaling pathways in human dental papilla cells. PLoS One. 2012, 7 (11): e50090-10.1371/journal.pone.0050090.
Article
CAS
PubMed Central
PubMed
Google Scholar
Liu H, Lin H, Zhang L, Sun Q, Yuan G, Zhang L, Chen S, Chen Z: miR-145 and miR-143 regulate odontoblast differentiation through targeting Klf4 and Osx genes in a feedback loop. J Biol Chem. 2013, 288 (13): 9261-9271. 10.1074/jbc.M112.433730.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li A, Song T, Wang F, Liu D, Fan Z, Zhang C, He J, Wang S: MicroRNAome and expression profile of developing tooth germ in miniature pigs. PLoS One. 2012, 7 (12): e52256-10.1371/journal.pone.0052256.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jheon AH, Li CY, Wen T, Michon F, Klein OD: Expression of microRNAs in the stem cell niche of the adult mouse incisor. PLoS One. 2011, 6 (9): e24536-10.1371/journal.pone.0024536.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lacruz RS, Smith CE, Bringas P, Chen YB, Smith SM, Snead ML, Kurtz I, Hacia JG, Hubbard MJ, Paine ML: Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling. J Cell Physiol. 2012, 227 (5): 2264-2275. 10.1002/jcp.22965.
Article
CAS
PubMed Central
PubMed
Google Scholar
Smith CE: Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med. 1998, 9 (2): 128-161. 10.1177/10454411980090020101.
Article
CAS
PubMed
Google Scholar
Lacruz RS, Smith CE, Chen YB, Hubbard MJ, Hacia JG, Paine ML: Gene-expression analysis of early- and late-maturation-stage rat enamel organ. Eur J Oral Sci. 2011, 119 (Suppl 1): 149-157.
Article
PubMed Central
PubMed
Google Scholar
Lacruz RS, Nanci A, Kurtz I, Wright JT, Paine ML: Regulation of pH During Amelogenesis. Calcif Tissue Int. 2010, 86 (2): 91-103. 10.1007/s00223-009-9326-7.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang J, Duncan D, Shi Z, Zhang B: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013, 41 (Web Server issue): W77-83.
Article
PubMed Central
PubMed
Google Scholar
Zhang B, Kirov S, Snoddy J: WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005, 33 (Web Server issue): W741-748.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chen LS, Couwenhoven RI, Hsu D, Luo W, Snead ML: Maintenance of amelogenin gene expression by transformed epithelial cells of mouse enamel organ. Arch Oral Biol. 1992, 37 (10): 771-778. 10.1016/0003-9969(92)90110-T.
Article
CAS
PubMed
Google Scholar
Shapiro JL, Wen X, Okamoto CT, Wang HJ, Lyngstadaas SP, Goldberg M, Snead ML, Paine ML: Cellular uptake of amelogenin, and its localization to CD63, and Lamp1-positive vesicles. Cell Mol Life Sci. 2007, 64 (2): 244-256. 10.1007/s00018-006-6429-4.
Article
CAS
PubMed
Google Scholar
Jevnaker AM, Osmundsen H: MicroRNA expression profiling of the developing murine molar tooth germ and the developing murine submandibular salivary gland. Arch Oral Biol. 2008, 53 (7): 629-645. 10.1016/j.archoralbio.2008.01.014.
Article
CAS
PubMed
Google Scholar
Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T: miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009, 37: D105-110. 10.1093/nar/gkn851.
Article
CAS
PubMed Central
PubMed
Google Scholar
Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou AG: The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res. 2009, 37: D155-158. 10.1093/nar/gkn809.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120 (1): 15-20. 10.1016/j.cell.2004.12.035.
Article
CAS
PubMed
Google Scholar
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27 (1): 91-105. 10.1016/j.molcel.2007.06.017.
Article
CAS
PubMed Central
PubMed
Google Scholar
Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19 (1): 92-105.
Article
CAS
PubMed Central
PubMed
Google Scholar
Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010, 466 (7308): 835-840. 10.1038/nature09267.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chen HC, Chen GH, Chen YH, Liao WL, Liu CY, Chang KP, Chang YS, Chen SJ: MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer. 2009, 100 (6): 1002-1011. 10.1038/sj.bjc.6604948.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chen HC, Lee YS, Sieber M, Lu HT, Wei PC, Wang CN, Peng HH, Chao AS, Cheng PJ, Chang SD, Chen SJ, Wang TH: MicroRNA and messenger RNA analyses of mesenchymal stem cells derived from teeth and the Wharton jelly of umbilical cord. Stem Cells Dev. 2012, 21 (6): 911-922. 10.1089/scd.2011.0186.
Article
CAS
PubMed
Google Scholar
Clarke C, Henry M, Doolan P, Kelly S, Aherne S, Sanchez N, Kelly P, Kinsella P, Breen L, Madden SF, Zhang L, Leonard M, Clynes M, Meleady P, Barron N: Integrated miRNA, mRNA and protein expression analysis reveals the role of post-transcriptional regulation in controlling CHO cell growth rate. BMC Genomics. 2012, 13: 656-10.1186/1471-2164-13-656.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dong J, Carey WA, Abel S, Collura C, Jiang G, Tomaszek S, Sutor S, Roden AC, Asmann YW, Prakash YS, Wigle DA: MicroRNA-mRNA interactions in a murine model of hyperoxia-induced bronchopulmonary dysplasia. BMC Genomics. 2012, 13: 204-10.1186/1471-2164-13-204.
Article
CAS
PubMed Central
PubMed
Google Scholar
He HC, Han ZD, Dai QS, Ling XH, Fu X, Lin ZY, Deng YH, Qin GQ, Cai C, Chen JH, Jiang FN, Liu X, Zhong WD: Global analysis of the differentially expressed miRNAs of prostate cancer in Chinese patients. BMC Genomics. 2013, 14: 757-10.1186/1471-2164-14-757.
Article
CAS
PubMed Central
PubMed
Google Scholar
Huang C, Xiao X, Chintagari NR, Breshears M, Wang Y, Liu L: MicroRNA and mRNA expression profiling in rat acute respiratory distress syndrome. BMC Med Genomics. 2014, 7: 46-10.1186/1755-8794-7-46.
Article
PubMed Central
PubMed
Google Scholar
Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, Tsujimoto G, Nakagawa M, Seki N: Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 2009, 125 (2): 345-352. 10.1002/ijc.24390.
Article
CAS
PubMed
Google Scholar
Tan KS, Choi H, Jiang X, Yin L, Seet JE, Patzel V, Engelward BP, Chow VT: Micro-RNAs in regenerating lungs: an integrative systems biology analysis of murine influenza pneumonia. BMC Genomics. 2014, 15: 587-10.1186/1471-2164-15-587.
Article
PubMed Central
PubMed
Google Scholar
Du T, Zamore PD: Beginning to understand microRNA function. Cell Res. 2007, 17 (8): 661-663. 10.1038/cr.2007.67.
Article
CAS
PubMed
Google Scholar
Salmanidis M, Pillman K, Goodall G, Bracken C: Direct transcriptional regulation by nuclear microRNAs. Int J Biochem Cell Biol. 2014, 54: 304-311.
Article
CAS
PubMed
Google Scholar
Standart N, Jackson RJ: MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev. 2007, 21 (16): 1975-1982. 10.1101/gad.1591507.
Article
CAS
PubMed
Google Scholar
Pillai RS, Bhattacharyya SN, Filipowicz W: Repression of protein synthesis by miRNAs: how many mechanisms?. Trends Cell Biol. 2007, 17 (3): 118-126. 10.1016/j.tcb.2006.12.007.
Article
CAS
PubMed
Google Scholar
Lacruz RS, Brookes SJ, Wen X, Jimenez JM, Vikman S, Hu P, White SN, Lyngstadaas SP, Okamoto CT, Smith CE, Paine ML: Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis. J Bone Miner Res. 2013, 28 (3): 672-687. 10.1002/jbmr.1779.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bronckers A, Kalogeraki L, Jorna HJ, Wilke M, Bervoets TJ, Lyaruu DM, Zandieh-Doulabi B, Denbesten P, de Jonge H: The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells. Bone. 2010, 46 (4): 1188-1196. 10.1016/j.bone.2009.12.002.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bartlett JD, Ganss B, Goldberg M, Moradian-Oldak J, Paine ML, Snead ML, Wen X, White SN, Zhou YL: 3. Protein-protein interactions of the developing enamel matrix. Curr Top Dev Biol. 2006, 74: 57-115.
Article
CAS
PubMed
Google Scholar
Tompkins K, George A, Veis A: Characterization of a mouse amelogenin [A-4]/M59 cell surface receptor. Bone. 2006, 38 (2): 172-180. 10.1016/j.bone.2005.08.013.
Article
CAS
PubMed
Google Scholar
Zou Y, Wang H, Shapiro JL, Okamoto CT, Brookes SJ, Lyngstadaas SP, Snead ML, Paine ML: Determination of protein regions responsible for interactions of amelogenin with CD63 and LAMP1. Biochem J. 2007, 408 (3): 347-354. 10.1042/BJ20070881.
Article
CAS
PubMed Central
PubMed
Google Scholar
Arquitt CK, Boyd C, Wright JT: Cystic fibrosis transmembrane regulator gene (CFTR) is associated with abnormal enamel formation. J Dent Res. 2002, 81 (7): 492-496. 10.1177/154405910208100712.
Article
CAS
PubMed
Google Scholar
Chang EH, Lacruz RS, Bromage TG, Bringas P, Welsh MJ, Zabner J, Paine ML: Enamel pathology resulting from loss of function in the cystic fibrosis transmembrane conductance regulator in a porcine animal model. Cells Tissues Organs. 2011, 194 (2–4): 249-254.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sui W, Boyd C, Wright JT: Altered pH regulation during enamel development in the cystic fibrosis mouse incisor. J Dent Res. 2003, 82 (5): 388-392. 10.1177/154405910308200512.
Article
CAS
PubMed
Google Scholar
Yoshida T, Kumashiro Y, Iwata T, Ishihara J, Umemoto T, Shiratsuchi Y, Kawashima N, Sugiyama T, Yamato M, Okano T: Requirement of integrin beta3 for iron transportation during enamel formation. J Dent Res. 2012, 91 (12): 1154-1159. 10.1177/0022034512462722.
Article
CAS
PubMed
Google Scholar
Cai J, Mutoh N, Shin JO, Tani-Ishii N, Ohshima H, Cho SW, Jung HS: Wnt5a plays a crucial role in determining tooth size during murine tooth development. Cell Tissue Res. 2011, 345 (3): 367-377. 10.1007/s00441-011-1224-4.
Article
CAS
PubMed
Google Scholar
Kuhn DE, Martin MM, Feldman DS, Terry AV, Nuovo GJ, Elton TS: Experimental validation of miRNA targets. Methods. 2008, 44 (1): 47-54. 10.1016/j.ymeth.2007.09.005.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cottonham CL, Kaneko S, Xu L: miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem. 2010, 285 (46): 35293-35302. 10.1074/jbc.M110.160069.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rouas R, Fayyad-Kazan H, El Zein N, Lewalle P, Rothe F, Simion A, Akl H, Mourtada M, El Rifai M, Burny A, Romero P, Martiat P, Badran B: Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. European J Immunol. 2009, 39 (6): 1608-1618. 10.1002/eji.200838509.
Article
CAS
Google Scholar
Mallory AC, Dugas DV, Bartel DP, Bartel B: MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol. 2004, 14 (12): 1035-1046. 10.1016/j.cub.2004.06.022.
Article
CAS
PubMed
Google Scholar
Zhang HM, Kuang S, Xiong X, Gao T, Liu C, Guo AY: Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases. Brief Bioinform. 2013, [Epub ahead of print]
Google Scholar
Michon F: Tooth evolution and dental defects: from genetic regulation network to micro-RNA fine-tuning. Birth Defects Res A Clin Mol Teratol. 2011, 91 (8): 763-769. 10.1002/bdra.20787.
Article
CAS
PubMed
Google Scholar
Shalgi R, Lieber D, Oren M, Pilpel Y: Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol. 2007, 3 (7): e131-10.1371/journal.pcbi.0030131.
Article
PubMed Central
PubMed
Google Scholar
Tsang J, Zhu J, van Oudenaarden A: MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell. 2007, 26 (5): 753-767. 10.1016/j.molcel.2007.05.018.
Article
CAS
PubMed Central
PubMed
Google Scholar