Hasserjian RP: Acute myeloid leukemia: advances in diagnosis and classification. International journal of laboratory hematology. 2013, 35 (3): 358-366. 10.1111/ijlh.12081.
CAS
PubMed
Google Scholar
Grimwade D, Hills R: Independent prognostic factors for AML outcome. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2009, 385-395.
Google Scholar
Ghanem H, Tank N, Tabbara IA: Prognostic implications of genetic aberrations in acute myelogenous leukemia with normal cytogenetics. American journal of hematology. 2012, 87 (1): 69-77. 10.1002/ajh.22197.
PubMed
Google Scholar
Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, et al: Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010, 115 (3): 453-474. 10.1182/blood-2009-07-235358.
PubMed
Google Scholar
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. The New England journal of medicine. 2013, 368 (22): 2059-2074.
Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER: The next-generation sequencing revolution and its impact on genomics. Cell. 2013, 155 (1): 27-38. 10.1016/j.cell.2013.09.006.
PubMed Central
CAS
PubMed
Google Scholar
Morey M, Fernandez-Marmiesse A, Castineiras D, Fraga JM, Couce ML, Cocho JA: A glimpse into past, present, and future DNA sequencing. Molecular genetics and metabolism. 2013, 110 (1-2): 3-24. 10.1016/j.ymgme.2013.04.024.
CAS
PubMed
Google Scholar
Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ: Performance comparison of benchtop high-throughput sequencing platforms. Nature biotechnology. 2012, 30 (5): 434-439. 10.1038/nbt.2198.
CAS
PubMed
Google Scholar
Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M: Comparison of next-generation sequencing systems. Journal of biomedicine & biotechnology. 2012, 251364
Google Scholar
Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y: A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC genomics. 2012, 13: 341-10.1186/1471-2164-13-341.
PubMed Central
CAS
PubMed
Google Scholar
Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, Dunford-Shore BH, McGrath S, Hickenbotham M, et al: DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008, 456 (7218): 66-72. 10.1038/nature07485.
PubMed Central
CAS
PubMed
Google Scholar
Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD, et al: Recurring mutations found by sequencing an acute myeloid leukemia genome. The New England journal of medicine. 2009, 361 (11): 1058-1066. 10.1056/NEJMoa0903840.
PubMed Central
CAS
PubMed
Google Scholar
Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, et al: DNMT3A mutations in acute myeloid leukemia. The New England journal of medicine. 2010, 363 (25): 2424-2433. 10.1056/NEJMoa1005143.
PubMed Central
CAS
PubMed
Google Scholar
Welch JS, Westervelt P, Ding L, Larson DE, Klco JM, Kulkarni S, Wallis J, Chen K, Payton JE, Fulton RS, et al: Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA : the journal of the American Medical Association. 2011, 305 (15): 1577-1584. 10.1001/jama.2011.497.
CAS
PubMed
Google Scholar
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013, 368 (22): 2059-2074.
Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, et al: The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012, 150 (2): 264-278. 10.1016/j.cell.2012.06.023.
PubMed Central
CAS
PubMed
Google Scholar
Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McLellan MD, et al: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012, 481 (7382): 506-510. 10.1038/nature10738.
PubMed Central
CAS
PubMed
Google Scholar
Landau D, Carter S, Getz G, Wu C: Clonal evolution in hematological malignancies and therapeutic implications. Leukemia. 2014, 28 (1): 34-43. 10.1038/leu.2013.248.
PubMed Central
CAS
PubMed
Google Scholar
Rebecca AB, Charles S: The evolution of the unstable cancer genome. Current Opinion in Genetics & Development. 2014, 24:
Google Scholar
Welch JS, Link DC: Genomics of AML: clinical applications of next-generation sequencing. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2011, 30-35.
Google Scholar
McGettigan P: Transcriptomics in the RNA-seq era. Current opinion in chemical biology. 2013, 17 (1): 4-11. 10.1016/j.cbpa.2012.12.008.
CAS
PubMed
Google Scholar
Wen H, Li Y, Malek SN, Kim YC, Xu J, Chen P, Xiao F, Huang X, Zhou X, Xuan Z, et al: New fusion transcripts identified in normal karyotype acute myeloid leukemia. PloS one. 2012, 7 (12): e51203-10.1371/journal.pone.0051203.
PubMed Central
CAS
PubMed
Google Scholar
Masetti R, Pigazzi M, Togni M, Astolfi A, Indio V, Manara E, Casadio R, Pession A, Basso G, Locatelli F: CBFA2T3-GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype. Blood. 2013, 121 (17): 3469-3472. 10.1182/blood-2012-11-469825.
CAS
PubMed
Google Scholar
Masetti R, Togni M, Astolfi A, Pigazzi M, Manara E, Indio V, Rizzari C, Rutella S, Basso G, Pession A, et al: DHH-RHEBL1 fusion transcript: a novel recurrent feature in the new landscape of pediatric CBFA2T3-GLIS2-positive acute myeloid leukemia. Oncotarget. 2013, 4 (10): 1712-1720.
PubMed Central
PubMed
Google Scholar
Wang Z, Liu X, Yang BZ, Gelernter J: The Role and Challenges of Exome Sequencing in Studies of Human Diseases. Frontiers in genetics. 2013, 4: 160-
PubMed Central
PubMed
Google Scholar
Biesecker LG: Exome sequencing makes medical genomics a reality. Nature genetics. 2010, 42 (1): 13-14. 10.1038/ng0110-13.
CAS
PubMed
Google Scholar
Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ: Target-enrichment strategies for next-generation sequencing. Nature methods. 2010, 7 (2): 111-118. 10.1038/nmeth.1419.
CAS
PubMed
Google Scholar
Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Shi JY, Zhu YM, Tang L, Zhang XW, et al: Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nature genetics. 2011, 43 (4): 309-315. 10.1038/ng.788.
CAS
PubMed
Google Scholar
Greif PA, Yaghmaie M, Konstandin NP, Ksienzyk B, Alimoghaddam K, Ghavamzadeh A, Hauser A, Graf A, Krebs S, Blum H, et al: Somatic mutations in acute promyelocytic leukemia (APL) identified by exome sequencing. Leukemia. 2011, 25 (9): 1519-1522. 10.1038/leu.2011.114.
CAS
PubMed
Google Scholar
Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W, Spanhol-Rosseto A, Klein HU, Dugas M, Schindela S, et al: Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood. 2011, 118 (23): 6153-6163. 10.1182/blood-2011-07-365320.
CAS
PubMed
Google Scholar
Greif PA, Dufour A, Konstandin NP, Ksienzyk B, Zellmeier E, Tizazu B, Sturm J, Benthaus T, Herold T, Yaghmaie M, et al: GATA2 zinc finger 1 mutations associated with biallelic CEBPA mutations define a unique genetic entity of acute myeloid leukemia. Blood. 2012, 120 (2): 395-403. 10.1182/blood-2012-01-403220.
CAS
PubMed
Google Scholar
Opatz S, Polzer H, Herold T, Konstandin NP, Ksienzyk B, Zellmeier E, Vosberg S, Graf A, Krebs S, Blum H, et al: Exome sequencing identifies recurring FLT3 N676K mutations in core-binding factor leukemia. Blood. 2013, 122 (10): 1761-1769. 10.1182/blood-2013-01-476473.
CAS
PubMed
Google Scholar
Duncavage EJ, Abel HJ, Szankasi P, Kelley TW, Pfeifer JD: Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2012, 25 (6): 795-804. 10.1038/modpathol.2012.29.
CAS
Google Scholar
Conte N, Varela I, Grove C, Manes N, Yusa K, Moreno T, Segonds-Pichon A, Bench A, Gudgin E, Herman B, et al: Detailed molecular characterisation of acute myeloid leukaemia with a normal karyotype using targeted DNA capture. Leukemia. 2013, 27 (9): 1820-1825. 10.1038/leu.2013.117.
PubMed Central
CAS
PubMed
Google Scholar
Kihara R, Nagata Y, Kiyoi H, Kato T, Yamamoto E, Suzuki K, Chen F, Asou N, Ohtake S, Miyawaki S, et al: Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014
Google Scholar
Döhner H, Estey E, Amadori S, Appelbaum F, Büchner T, Burnett A, Dombret H, Fenaux P, Grimwade D, Larson R, et al: Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010, 115 (3): 453-474. 10.1182/blood-2009-07-235358.
PubMed
Google Scholar
Dombret H, Preudhomme C, Boissel N: Core binding factor acute myeloid leukemia (CBF-AML): is high-dose Ara-C (HDAC) consolidation as effective as you think?. Current opinion in hematology. 2009, 16 (2): 92-97. 10.1097/MOH.0b013e3283257b18.
CAS
PubMed
Google Scholar
Orozco JJ, Appelbaum FR: Unfavorable, complex, and monosomal karyotypes: the most challenging forms of acute myeloid leukemia. Oncology. 2012, 26 (8): 706-712.
PubMed
Google Scholar
Breems DA, Van Putten WL, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KB, Mellink CH, Nieuwint A, Jotterand M, Hagemeijer A, Beverloo HB, et al: Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2008, 26 (29): 4791-4797. 10.1200/JCO.2008.16.0259.
Google Scholar
Rucker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, Habdank M, Kugler CM, Holzmann K, Gaidzik VI, et al: TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012, 119 (9): 2114-2121. 10.1182/blood-2011-08-375758.
PubMed
Google Scholar
Paschka P: Core binding factor acute myeloid leukemia. Seminars in oncology. 2008, 35 (4): 410-417. 10.1053/j.seminoncol.2008.04.011.
CAS
PubMed
Google Scholar
Martelli MP, Sportoletti P, Tiacci E, Martelli MF, Falini B: Mutational landscape of AML with normal cytogenetics: biological and clinical implications. Blood reviews. 2013, 27 (1): 13-22. 10.1016/j.blre.2012.11.001.
CAS
PubMed
Google Scholar
Dohner H, Gaidzik VI: Impact of genetic features on treatment decisions in AML. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2011, 36-42.
Google Scholar
Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S, Thomas X, Raffoux E, Lamandin C, Castaigne S, et al: Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002, 100 (8): 2717-2723. 10.1182/blood-2002-03-0990.
CAS
PubMed
Google Scholar
Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, Uitterlinden AG, Erpelinck CA, Delwel R, Lowenberg B, et al: Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005, 106 (12): 3747-3754. 10.1182/blood-2005-05-2168.
CAS
PubMed
Google Scholar
Shih AH, Abdel-Wahab O, Patel JP, Levine RL: The role of mutations in epigenetic regulators in myeloid malignancies. Nature reviews Cancer. 2012, 12 (9): 599-612. 10.1038/nrc3343.
CAS
PubMed
Google Scholar
Marcucci G, Metzeler K, Schwind S, Becker H, Maharry K, Mrózek K, Radmacher M, Kohlschmidt J, Nicolet D, Whitman S, et al: Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2012, 30 (7): 742-750. 10.1200/JCO.2011.39.2092.
Google Scholar
Ostronoff F, Othus M, Ho PA, Kutny M, Geraghty DE, Petersdorf SH, Godwin JE, Willman CL, Radich JP, Appelbaum FR, et al: Mutations in the DNMT3A exon 23 independently predict poor outcome in older patients with acute myeloid leukemia: a SWOG report. Leukemia. 2013, 27 (1): 238-241. 10.1038/leu.2012.168.
PubMed Central
CAS
PubMed
Google Scholar
Ribeiro AF, Pratcorona M, Erpelinck-Verschueren C, Rockova V, Sanders M, Abbas S, Figueroa ME, Zeilemaker A, Melnick A, Lowenberg B, et al: Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood. 2012, 119 (24): 5824-5831. 10.1182/blood-2011-07-367961.
CAS
PubMed
Google Scholar
Roller A, Grossmann V, Bacher U, Poetzinger F, Weissmann S, Nadarajah N, Boeck L, Kern W, Haferlach C, Schnittger S, et al: Landmark analysis of DNMT3A mutations in hematological malignancies. Leukemia. 2013, 27 (7): 1573-1578. 10.1038/leu.2013.65.
CAS
PubMed
Google Scholar
Renneville A, Boissel N, Nibourel O, Berthon C, Helevaut N, Gardin C, Cayuela JM, Hayette S, Reman O, Contentin N, et al: Prognostic significance of DNA methyltransferase 3A mutations in cytogenetically normal acute myeloid leukemia: a study by the Acute Leukemia French Association. Leukemia. 2012, 26 (6): 1247-1254. 10.1038/leu.2011.382.
CAS
PubMed
Google Scholar
Thol F, Damm F, Lüdeking A, Winschel C, Wagner K, Morgan M, Yun H, Göhring G, Schlegelberger B, Hoelzer D, et al: Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2011, 29 (21): 2889-2896. 10.1200/JCO.2011.35.4894.
CAS
Google Scholar
Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA, Fulton R, Meyer MR, Erdmann-Gilmore P, Townsend RR, Wilson RK, et al: The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer cell. 2014, 25 (4): 442-454. 10.1016/j.ccr.2014.02.010.
PubMed Central
CAS
PubMed
Google Scholar
Kim SJ, Zhao H, Hardikar S, Singh AK, Goodell MA, Chen T: A DNMT3A mutation common in AML exhibits dominant-negative effects in murine ES cells. Blood. 2013, 122 (25): 4086-4089. 10.1182/blood-2013-02-483487.
PubMed Central
CAS
PubMed
Google Scholar
Kronke J, Bullinger L, Teleanu V, Tschurtz F, Gaidzik VI, Kuhn MW, Rucker FG, Holzmann K, Paschka P, Kapp-Schworer S, et al: Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood. 2013, 122 (1): 100-108. 10.1182/blood-2013-01-479188.
PubMed
Google Scholar
Hou HA, Kuo YY, Liu CY, Chou WC, Lee MC, Chen CY, Lin LI, Tseng MH, Huang CF, Chiang YC, et al: DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood. 2012, 119 (2): 559-568. 10.1182/blood-2011-07-369934.
CAS
PubMed
Google Scholar
Challen G, Sun D, Jeong M, Luo M, Jelinek J, Berg J, Bock C, Vasanthakumar A, Gu H, Xi Y, et al: Dnmt3a is essential for hematopoietic stem cell differentiation. Nature genetics. 2012, 44 (1): 23-31.
CAS
Google Scholar
Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, Kennedy JA, Schimmer AD, Schuh AC, Yee KW, et al: Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014, 506 (7488): 328-333. 10.1038/nature13038.
CAS
PubMed
Google Scholar
Andronesi OC, Rapalino O, Gerstner E, Chi A, Batchelor TT, Cahill DP, Sorensen AG, Rosen BR: Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. The Journal of clinical investigation. 2013, 123 (9): 3659-3663. 10.1172/JCI67229.
PubMed Central
CAS
PubMed
Google Scholar
Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrozek K, Margeson D, Holland KB, Whitman SP, Becker H, Schwind S, et al: IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010, 28 (14): 2348-2355. 10.1200/JCO.2009.27.3730.
CAS
Google Scholar
Walker A, Marcucci G: Molecular prognostic factors in cytogenetically normal acute myeloid leukemia. Expert review of hematology. 2012, 5 (5): 547-558. 10.1586/ehm.12.45.
PubMed Central
CAS
PubMed
Google Scholar
DiNardo CD, Propert KJ, Loren AW, Paietta E, Sun Z, Levine RL, Straley KS, Yen K, Patel JP, Agresta S, et al: Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood. 2013, 121 (24): 4917-4924. 10.1182/blood-2013-03-493197.
PubMed Central
CAS
PubMed
Google Scholar
Nomdedeu J, Hoyos M, Carricondo M, Esteve J, Bussaglia E, Estivill C, Ribera JM, Duarte R, Salamero O, Gallardo D, et al: Adverse impact of IDH1 and IDH2 mutations in primary AML: experience of the Spanish CETLAM group. Leukemia research. 2012, 36 (8): 990-997. 10.1016/j.leukres.2012.03.019.
CAS
PubMed
Google Scholar
Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Kronke J, Bullinger L, Spath D, Kayser S, Zucknick M, Gotze K, et al: IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010, 28 (22): 3636-3643. 10.1200/JCO.2010.28.3762.
CAS
Google Scholar
Green C, Evans C, Hills R, Burnett A, Linch D, Gale R: The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status. Blood. 2010, 116 (15): 2779-2782. 10.1182/blood-2010-02-270926.
CAS
PubMed
Google Scholar
Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S, Hansen E, Straley K, Kernytsky A, Liu W, Gliser C, et al: Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science. 2013, 340 (6132): 622-626. 10.1126/science.1234769.
CAS
PubMed
Google Scholar
Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, Tsoi J, Clark O, Oldrini B, Komisopoulou E, et al: An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013, 340 (6132): 626-630. 10.1126/science.1236062.
PubMed Central
CAS
PubMed
Google Scholar
IDH mutant specific inhibitors AG-221 and AG-120. [http://www.agios.com/pipeline-idh.php]
FROM AACR-Haematological cancer: AG-221, first-in-class IDH2 mutation inhibitor shows promise. Nature reviews Clinical oncology. 2014, 11 (6): 302-
Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A, et al: Mutation in TET2 in myeloid cancers. The New England journal of medicine. 2009, 360 (22): 2289-2301. 10.1056/NEJMoa0810069.
PubMed
Google Scholar
Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W: The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia. 2013
Google Scholar
Metzeler KH, Maharry K, Radmacher MD, Mrozek K, Margeson D, Becker H, Curfman J, Holland KB, Schwind S, Whitman SP, et al: TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2011, 29 (10): 1373-1381. 10.1200/JCO.2010.32.7742.
Google Scholar
Chou WC, Chou SC, Liu CY, Chen CY, Hou HA, Kuo YY, Lee MC, Ko BS, Tang JL, Yao M, et al: TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011, 118 (14): 3803-3810. 10.1182/blood-2011-02-339747.
CAS
PubMed
Google Scholar
Gaidzik VI, Paschka P, Spath D, Habdank M, Kohne CH, Germing U, von Lilienfeld-Toal M, Held G, Horst HA, Haase D, et al: TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2012, 30 (12): 1350-1357. 10.1200/JCO.2011.39.2886.
CAS
Google Scholar
Wakita S, Yamaguchi H, Omori I, Terada K, Ueda T, Manabe E, Kurosawa S, Iida S, Ibaraki T, Sato Y, et al: Mutations of the epigenetics-modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may induce FLT3-ITD at relapse in de novo acute myeloid leukemia. Leukemia. 2013, 27 (5): 1044-1052. 10.1038/leu.2012.317.
CAS
PubMed
Google Scholar
Krivtsov AV, Armstrong SA: MLL translocations, histone modifications and leukaemia stem-cell development. Nature reviews Cancer. 2007, 7 (11): 823-833. 10.1038/nrc2253.
CAS
PubMed
Google Scholar
Abdel-Wahab O, Levine R: Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood. 2013, 121 (18): 3563-3572. 10.1182/blood-2013-01-451781.
PubMed Central
CAS
PubMed
Google Scholar
Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N, Lagarde A, Prebet T, Nezri M, Sainty D, et al: Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. British journal of haematology. 2009, 145 (6): 788-800. 10.1111/j.1365-2141.2009.07697.x.
CAS
PubMed
Google Scholar
Tefferi A: Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010, 24 (6): 1128-1138. 10.1038/leu.2010.69.
PubMed Central
CAS
PubMed
Google Scholar
Schnittger S, Eder C, Jeromin S, Alpermann T, Fasan A, Grossmann V, Kohlmann A, Illig T, Klopp N, Wichmann HE, et al: ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia. 2013, 27 (1): 82-91. 10.1038/leu.2012.262.
CAS
PubMed
Google Scholar
Metzeler K, Becker H, Maharry K, Radmacher M, Kohlschmidt J, Mrózek K, Nicolet D, Whitman S, Wu Y-Z, Schwind S, et al: ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood. 2011, 118 (26): 6920-6929. 10.1182/blood-2011-08-368225.
PubMed Central
CAS
PubMed
Google Scholar
Abdel-Wahab O, Gao J, Adli M, Dey A, Trimarchi T, Chung Y, Kuscu C, Hricik T, Ndiaye-Lobry D, Lafave L, et al: Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. The Journal of experimental medicine. 2013, 210 (12): 2641-2659. 10.1084/jem.20131141.
PubMed Central
CAS
PubMed
Google Scholar
Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa M, Vasanthakumar A, Patel J, Zhao X, et al: Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer cell. 2011, 20 (1): 11-24. 10.1016/j.ccr.2011.06.001.
PubMed Central
CAS
PubMed
Google Scholar
Altucci L, Clarke N, Nebbioso A, Scognamiglio A, Gronemeyer H: Acute myeloid leukemia: therapeutic impact of epigenetic drugs. The international journal of biochemistry & cell biology. 2005, 37 (9): 1752-1762. 10.1016/j.biocel.2005.04.019.
CAS
Google Scholar
Schenk T, Chen WC, Gollner S, Howell L, Jin L, Hebestreit K, Klein HU, Popescu AC, Burnett A, Mills K, et al: Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nature medicine. 2012, 18 (4): 605-611. 10.1038/nm.2661.
PubMed Central
CAS
PubMed
Google Scholar
Deshpande AJ, Chen L, Fazio M, Sinha AU, Bernt KM, Banka D, Dias S, Chang J, Olhava EJ, Daigle SR, et al: Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood. 2013, 121 (13): 2533-2541. 10.1182/blood-2012-11-465120.
PubMed Central
CAS
PubMed
Google Scholar
Stewart HJ, Horne GA, Bastow S, Chevassut TJ: BRD4 associates with p53 in DNMT3A-mutated leukemia cells and is implicated in apoptosis by the bromodomain inhibitor JQ1. Cancer medicine. 2013, 2 (6): 826-835. 10.1002/cam4.146.
PubMed Central
CAS
PubMed
Google Scholar
Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. New England Journal of Medicine. 2013, 368 (22): 2059-2074.
Prebet T, Boissel N, Reutenauer S, Thomas X, Delaunay J, Cahn JY, Pigneux A, Quesnel B, Witz F, Thepot S, et al: Acute myeloid leukemia with translocation (8;21) or inversion (16) in elderly patients treated with conventional chemotherapy: a collaborative study of the French CBF-AML intergroup. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2009, 27 (28): 4747-4753. 10.1200/JCO.2008.21.0674.
Google Scholar
Renneville A, Boissel N, Nibourel O, Berthon C, Helevaut N, Gardin C, Cayuela JM, Hayette S, Reman O, Contentin N, et al: Prognostic significance of DNA methyltransferase 3A mutations in cytogenetically normal acute myeloid leukemia: a study by the Acute Leukemia French Association. Leukemia. 2012, 26 (6): 1247-1254. 10.1038/leu.2011.382.
CAS
PubMed
Google Scholar
Yamaguchi S, Iwanaga E, Tokunaga K, Nanri T, Shimomura T, Suzushima H, Mitsuya H, Asou N: IDH1 and IDH2 mutations confer an adverse effect in patients with acute myeloid leukemia lacking the NPM1 mutation. European journal of haematology. 2014
Google Scholar
Chotirat S, Thongnoppakhun W, Promsuwicha O, Boonthimat C, Auewarakul CU: Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients. Journal of hematology & oncology. 2012, 5: 5-10.1186/1756-8722-5-5.
CAS
Google Scholar
Chao HY, Jia ZX, Chen T, Lu XZ, Cen L, Xiao R, Jiang NK, Ying JH, Zhou M, Zhang R: IDH2 mutations are frequent in Chinese patients with acute myeloid leukemia and associated with NPM1 mutations and FAB-M2 subtype. International journal of laboratory hematology. 2012, 34 (5): 502-509. 10.1111/j.1751-553X.2012.01422.x.
PubMed
Google Scholar
Grossmann V, Haferlach C, Nadarajah N, Fasan A, Weissmann S, Roller A, Eder C, Stopp E, Kern W, Haferlach T, et al: CEBPA double-mutated acute myeloid leukaemia harbours concomitant molecular mutations in 76.8% of cases with TET2 and GATA2 alterations impacting prognosis. British journal of haematology. 2013, 161 (5): 649-658. 10.1111/bjh.12297.
CAS
PubMed
Google Scholar
Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C, Dicker F, Fasan A, Haferlach C, Haferlach T, et al: Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. 2012, 26 (5): 934-942. 10.1038/leu.2011.326.
CAS
PubMed
Google Scholar
Kosmider O, Delabesse E, de Mas VM, Cornillet-Lefebvre P, Blanchet O, Delmer A, Recher C, Raynaud S, Bouscary D, Viguie F, et al: TET2 mutations in secondary acute myeloid leukemias: a French retrospective study. Haematologica. 2011, 96 (7): 1059-1063. 10.3324/haematol.2011.040840.
PubMed Central
CAS
PubMed
Google Scholar
Pratcorona M, Abbas S, Sanders MA, Koenders JE, Kavelaars FG, Erpelinck-Verschueren CA, Zeilemakers A, Lowenberg B, Valk PJ: Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica. 2012, 97 (3): 388-392. 10.3324/haematol.2011.051532.
PubMed Central
CAS
PubMed
Google Scholar