Onyango RO: State of the Globe: Tracking Tuberculosis is the Test of Time. J Glob Infect Dis. 2011, 3 (1): 1-3. 10.4103/0974-777X.77287.
Article
PubMed Central
PubMed
Google Scholar
McQuade Billingsley K, Smith N, Shirley R, Achieng L, Keiser P: A quality assessment tool for tuberculosis control activities in resource limited settings. Tuberculosis. 2011, 91 (Suppl 1): S49-53.
Article
PubMed
Google Scholar
Heifets LB, Cangelosi GA: Drug susceptibility testing of Mycobacterium tuberculosis: a neglected problem at the turn of the century. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease. 1999, 3 (7): 564-581.
CAS
Google Scholar
Dooley KE, Mitnick CD, Ann DeGroote M, Obuku E, Belitsky V, Hamilton CD, Makhene M, Shah S, Brust JC, Durakovic N, et al: Old drugs, new purpose: retooling existing drugs for optimized treatment of resistant tuberculosis. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2012, 55 (4): 572-581. 10.1093/cid/cis487.
Article
Google Scholar
Dhiman H, Dhanjal JK, Sharma S, Chacko S, Grover S, Grover A: Resisting resistant Mycobacterium tuberculosis naturally: mechanistic insights into the inhibition of the parasite's sole signal peptidase Leader peptidase B. Biochem Biophys Res Commun. 2013, 433 (4): 552-557. 10.1016/j.bbrc.2013.03.013.
Article
CAS
PubMed
Google Scholar
Dhanjal JK, Grover S, Sharma S, Singh A, Grover A: Structural insights into mode of actions of novel natural Mycobacterium protein tyrosine phosphatase B inhibitors. BMC Genomics. 2014, 15 (Suppl 1): S3-10.1186/1471-2164-15-S1-S3.
Article
Google Scholar
Goyal M, Dhanjal JK, Goyal S, Tyagi C, Hamid R, Grover A: Development of dual inhibitors against Alzheimer's disease using fragment-based QSAR and molecular docking. Biomed Res Int. 2014, 2014: 979606-
Article
PubMed Central
PubMed
Google Scholar
Goyal M, Grover S, Dhanjal JK, Goyal S, Tyagi C, Grover A: Molecular modelling studies on flavonoid derivatives as dual site inhibitors of human acetyl cholinesterase using 3D-QSAR, pharmacophore and high throughput screening approaches. Medicinal Chemistry Research. 2014, 23 (4): 2122-2132. 10.1007/s00044-013-0810-2.
Article
CAS
Google Scholar
Soni S, Tyagi C, Grover A, Goswami SK: Molecular modeling and molecular dynamics simulations based structural analysis of the SG2NA protein variants. BMC Res Notes. 2014, 7 (4): 446-
Article
PubMed Central
PubMed
Google Scholar
Wright A, Zignol M, Van Deun A, Falzon D, Gerdes SR, Feldman K, Hoffner S, Drobniewski F, Barrera L, van Soolingen D, et al: Epidemiology of antituberculosis drug resistance 2002-07: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Lancet. 2009, 373 (4): 1861-1873.
Article
PubMed
Google Scholar
Heifets L, Lindholm-Levy P: Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am Rev Respir Dis. 1992, 145 (4): 1223-1225.
Article
CAS
PubMed
Google Scholar
Chang KC, Yew WW, Zhang Y: Pyrazinamide susceptibility testing in Mycobacterium tuberculosis: a systematic review with meta-analyses. Antimicrob Agents Chemother. 2011, 55 (4): 4499-4505.
Article
PubMed Central
CAS
PubMed
Google Scholar
Konno K, Feldmann FM, McDermott W: Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis. 1967, 95 (4): 461-469.
CAS
PubMed
Google Scholar
Zhang H, Deng JY, Bi LJ, Zhou YF, Zhang ZP, Zhang CG, Zhang Y, Zhang XE: Characterization of Mycobacterium tuberculosis nicotinamidase/ pyrazinamidase. FEBS J. 2008, 275 (4): 753-762. 10.1111/j.1742-4658.2007.06241.x.
Article
CAS
PubMed
Google Scholar
Yeager RL, Munroe WG, Dessau FI: Pyrazinamide (aldinamide) in the treatment of pulmonary tuberculosis. Am Rev Tuberc. 1952, 65 (4): 523-546.
CAS
PubMed
Google Scholar
Scorpio A, Lindholm-Levy P, Heifets L, Gilman R, Siddiqi S, Cynamon M, Zhang Y: Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1997, 41 (4): 540-543.
PubMed Central
CAS
PubMed
Google Scholar
Morlock GP, Crawford JT, Butler WR, Brim SE, Sikes D, Mazurek GH, Woodley CL, Cooksey RC: Phenotypic characterization of pncA mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2000, 44 (4): 2291-2295.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jureen P, Werngren J, Toro JC, Hoffner S: Pyrazinamide resistance and pncA gene mutations in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2008, 52 (4): 1852-1854.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lemaitre N, Sougakoff W, Truffot-Pernot C, Jarlier V: Characterization of new mutations in pyrazinamide-resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. Antimicrob Agents Chemother. 1999, 43 (4): 1761-1763.
PubMed Central
CAS
PubMed
Google Scholar
Sreevatsan S, Pan X, Zhang Y, Kreiswirth BN, Musser JM: Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob Agents Chemother. 1997, 41 (4): 636-640.
PubMed Central
CAS
PubMed
Google Scholar
Sheen P, Ferrer P, Gilman RH, Christiansen G, Moreno-Roman P, Gutierrez AH, Sotelo J, Evangelista W, Fuentes P, Rueda D, et al: Role of metal ions on the activity of Mycobacterium tuberculosis pyrazinamidase. Am J Trop Med Hyg. 2012, 87 (4): 153-161.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pandey S, Newton S, Upton A, Roberts S, Drinkovic D: Characterisation of pncA mutations in clinical Mycobacterium tuberculosis isolates in New Zealand. Pathology. 2009, 41 (4): 582-584.
Article
CAS
PubMed
Google Scholar
Quiliano M, Gutierrez AH, Gilman RH, Lopez C, Evangelista W, Sotelo J, Sheen P, Zimic M: Structure-Activity relationship in mutated pyrazinamidases from Mycobacterium tuberculosis. Bioinformation. 2011, 6 (4): 335-339.
Article
PubMed Central
PubMed
Google Scholar
Rajendran V, Sethumadhavan R: Drug resistance mechanism of PncA in Mycobacterium tuberculosis. Journal of biomolecular structure & dynamics. 2014, 32 (4): 209-221.
Article
CAS
Google Scholar
Petrella S, Gelus-Ziental N, Maudry A, Laurans C, Boudjelloul R, Sougakoff W: Crystal structure of the pyrazinamidase of Mycobacterium tuberculosis: insights into natural and acquired resistance to pyrazinamide. PLoS One. 2011, 6 (4): e15785-
Article
PubMed Central
CAS
PubMed
Google Scholar
Du X, Wang W, Kim R, Yakota H, Nguyen H, Kim SH: Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochemistry. 2001, 40 (4): 14166-14172.
Article
CAS
PubMed
Google Scholar
Lemaitre N, Callebaut I, Frenois F, Jarlier V, Sougakoff W: Study of the structure-activity relationships for the pyrazinamidase (PncA) from Mycobacterium tuberculosis. Biochem J. 2001, 353 (Pt 3): 453-458.
PubMed Central
CAS
PubMed
Google Scholar
Ramaswamy S, Musser JM: Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tubercle and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease. 1998, 79 (4): 3-29.
Article
CAS
Google Scholar
Daum LT, Fourie PB, Bhattacharyya S, Ismail NA, Gradus S, Maningi NE, Omar SV, Fischer GW: Next-generation sequencing for identifying pyrazinamide resistance in Mycobacterium tuberculosis. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2014, 58 (4): 903-904.
Article
Google Scholar
Almeida Da Silva PE, Palomino JC: Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother. 2011, 66 (4): 1417-1430.
Article
CAS
PubMed
Google Scholar
Purohit R, Rajendran V, Sethumadhavan R: Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and Isoniazid susceptibility: an in silico analysis. J Mol Model. 2011, 17 (4): 869-877. 10.1007/s00894-010-0785-6.
Article
CAS
PubMed
Google Scholar
Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, et al: The Protein Data Bank. Acta Crystallogr D Biol Crystallogr. 2002, 58 (Pt 6 No 1): 899-907.
Article
PubMed
Google Scholar
Stahle L, Ljungberg T, Rodebjer A, Ogren SO, Ungerstedt U: Differential effects of the dopamine antagonist remoxipride on apomorphine induced behaviour in the rat. Pharmacol Toxicol. 1987, 60 (4): 227-232.
Article
CAS
PubMed
Google Scholar
Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008, 36 (Database): D901-906.
Article
PubMed Central
CAS
PubMed
Google Scholar
Joe Dundas ZO, Tseng Jeffery, Binkowski Andrew, Turpaz Yaron, Liang Jie: CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated resiudes. Nucleic Acids Res. 2006, 34: W116-W118. 10.1093/nar/gkl282.
Article
PubMed Central
PubMed
Google Scholar
Sehnal D, Vareková RS, Berka K, Pravda L, Navrátilová V, Banás P, Ionescu C-M, Otyepka M, Koca J: MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminformatics. 2013, 5: 39-10.1186/1758-2946-5-39.
Article
CAS
Google Scholar
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, et al: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004, 47 (4): 1739-1749.
Article
CAS
PubMed
Google Scholar
Small-Molecule Drug Discovery Suite 2013-1: Glide v. 2013, Schrödinger, LLC, New York, NY
Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W: Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013, 27 (4): 221-234.
Article
CAS
PubMed
Google Scholar
Schrödinger Release 2013-1: Schrödinger Suite 2013 Protein Preparation Wizard; Epik version 2.4. 2013, S, LLC, New York, NY, Impact version 5.9, Schrödinger, LLC, New York, NY, 2013; Prime version 3.2, Schrödinger, LLC, New York, NY, 2013
Schrödinger Release 2013-1: LigPrep v. 2013, Schrödinger, LLC, New York, NY
Jones S, Thornton JM: Principles of protein-protein interactions. Proc Natl Acad Sci USA. 1996, 93 (4): 13-20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ: PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005, W363-367. 33 Web Server
Duhovny D, Nussinov R, Wolfson HJ: Efficient unbound docking of rigid molecules. Algorithms in bioinformatics. 2002, Springer, 185-200.
Chapter
Google Scholar
Grosdidier A, Zoete V, Michielin O: SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011, W270-277. 39 Web Server
Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W: Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J Chem Theory Comput. 2010, 6 (4): 1509-1519.
Article
CAS
Google Scholar
Schrödinger Release 2013-1: Desmond Molecular Dynamics System v, D. E. 2013, Shaw Research, New York, NY, Maestro-Desmond Interoperability Tools, version 3.4, Schrödinger, New York, NY, 2013
Wallace AC LR: LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995, 8 (4): 127-134.
Article
PubMed
Google Scholar