Brennecke J, Stark A, Russell RB, Cohen SM: Principles of microRNA-target recognition. PLOS Biology. 2005, 3 (3): e85-10.1371/journal.pbio.0030085.
Article
PubMed Central
PubMed
Google Scholar
Brodersen P, Voinnet O: Revisiting the principles of microRNA target recognition and mode of action. Nature Reviews Molecular Cell Biology. 2009, 10 (2): 141-148. 10.1038/nrm2619.
Article
CAS
PubMed
Google Scholar
Helwak A, Kudla G, Dudnakova T, Tollervey D: Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013, 153 (3): 654-65. 10.1016/j.cell.2013.03.043.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morozova N, Zinovyev A, Nonne N, Pritchard LL, Gorban AN, Harel-Bellan A: Kinetic signatures of microRNA modes of action. RNA. 2012, 18 (9): 1635-55. 10.1261/rna.032284.112.
Article
PubMed Central
CAS
PubMed
Google Scholar
Selbach M, Schwanh¨ausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature. 2008, 455 (7209): 58-63. 10.1038/nature07228.
Article
CAS
PubMed
Google Scholar
Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010, 466 (7308): 835-840. 10.1038/nature09267.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116 (2): 281-297. 10.1016/S0092-8674(04)00045-5.
Article
CAS
PubMed
Google Scholar
Friedman RC, Farh KKH, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19: 92-105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim Dh, Gru¨n D, van Oudenaarden A: Dampening of expression oscillations by synchronous regulation of a microRNA and its target. Nat Genet. 2013, 45 (11): 1337-44. 10.1038/ng.2763.
Article
CAS
PubMed
Google Scholar
Schickel R, Boyerinas B, Park SM, Peter ME: MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008, 27 (45): 5959-5974. 10.1038/onc.2008.274.
Article
CAS
PubMed
Google Scholar
Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006, 6 (4): 259-269. 10.1038/nrc1840.
Article
CAS
PubMed
Google Scholar
van Dongen S, Abreu-Goodger C, Enright AJ: Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods. 2008, 5 (12): 1023-5. 10.1038/nmeth.1267.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liang Z, Zhou H, He Z, Zheng H, Wu J: mirAct: a web tool for evaluating microRNA activity based on gene expression data. Nucleic Acids Res. 2011, 39: W139-44. 10.1093/nar/gkr351.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rasmussen SH, Jacobsen A, Krogh A: cWords - systematic microRNA regulatory motif discovery from mRNA expression data. Silence. 2013, 4 (1): 2-10.1186/1758-907X-4-2.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J, Califano A: An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell. 2011, 147 (2): 370-81. 10.1016/j.cell.2011.09.041.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hansen TB, Kjems J, Damgaard CK: Circular RNA and miR-7 in cancer. Cancer Res. 2013, 73 (18): 5609-12. 10.1158/0008-5472.CAN-13-1568.
Article
CAS
PubMed
Google Scholar
Tay Y, Rinn J, Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014, 505 (7483): 344-52. 10.1038/nature12986.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C, Sottoriva A, Zhao Y, Hirst M, Armisen J, Miska EA, Chin SF, Provenzano E, Turashvili G, Green A, Ellis I, Aparicio S, Caldas C: The shaping and functional consequences of the microRNA landscape in breast cancer. Nature. 2013, 497 (7449): 378-82. 10.1038/nature12108.
Article
CAS
PubMed
Google Scholar
Farazi TA, Ten Hoeve JJ, Brown M, Mihailovic A, Horlings HM, van de Vijver MJ, Tuschl T, Wessels LF: Identification of distinct miRNA target regulation between breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets. Genome Biol. 2014, 7 (1): 15-R29.
Google Scholar
Jacobsen A1, Silber J, Harinath G, Huse JT, Schultz N, Sander C: Analysis of microRNA-target interactions across diverse cancer types. Nat Struct Mol Biol. 2013, 20 (11): 1325-32. 10.1038/nsmb.2678.
Article
PubMed Central
CAS
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005, 102 (43): 15545-50. 10.1073/pnas.0506580102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maire V, Baldeyron C, Richardson M, Tesson B, Vincent-Salomon A, Gravier E, Marty-Prouvost B, De Koning L, Rigaill G, Dumont A, Gentien D, Barillot E, Roman-Roman S, Depil S, Cruzalegui F, Pierré A, Tucker GC, Dubois T: TTK/hMPS1 is an attractive therapeutic target for triple-negative breast cancer. PLoS One. 2013, 8 (5): e63712-10.1371/journal.pone.0063712.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maire V, Nemati F, Richardson M, Vincent-Salomon A, Tesson B, Rigaill G, Gravier E, Marty-Prouvost B, De Koning L, Lang G, Gentien D, Dumont A, Barillot E, Marangoni E, Decaudin D, Roman-Roman S, Pierré A, Cruzalegui F, Depil S, Tucker GC, Dubois T: Polo-like kinase 1: a potential therapeutic option in combination with conventional chemotherapy for the management of patients with triple-negative breast cancer. Cancer Res. 2013, 73 (2): 813-23. 10.1158/0008-5472.CAN-12-2633.
Article
CAS
PubMed
Google Scholar
Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature. 2012, 490 (7418): 61-70. 10.1038/nature11412.
Article
Google Scholar
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27 (1): 91-105. 10.1016/j.molcel.2007.06.017.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cho WC: OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007, 25 (6): 60-
Article
Google Scholar
Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Russnes HG, Rønneberg JA, Johnsen H, Navon R, Rødland E, Makela R, Naume B, Perala M, Kallioniemi O, Kristensen VN, Yakhini Z, Børresen-Dale AL: miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One. 2011, 6 (2): e16915-10.1371/journal.pone.0016915.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shalgi R, Lieber D, Oren M, Pilpel Y: Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol. 2007, 3 (7): e131-10.1371/journal.pcbi.0030131.
Article
PubMed Central
PubMed
Google Scholar
Re A, Corá D, Taverna D, Caselle M: Genome-wide survey of microRNA-transcription factor feed-forward regulatory circuits in human. Mol Biosyst. 2009, 5 (8): 854-67. 10.1039/b900177h.
Article
PubMed Central
CAS
PubMed
Google Scholar
Riba A, Bosia C, El Baroudi M, Ollino L, Caselle M: A combination of transcriptional and microRNA regulation improves the stability of the relative concentrations of target genes. PLoS Comput Biol. 2014, 10 (2): e1003490-10.1371/journal.pcbi.1003490.
Article
PubMed Central
PubMed
Google Scholar
Toft DJ, Cryns VL: Minireview: Basal-like breast cancer: from molecular profiles to targeted therapies. Mol Endocrinol. 2011, 25 (2): 199-211. 10.1210/me.2010-0164.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sandhu R, Rivenbark AG, Mackler RM, Livasy CA, Coleman WB: Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer. Int J Oncol. 2014, 44 (2): 563-72.
PubMed Central
CAS
PubMed
Google Scholar
Tang W, Yu F, Yao H, Cui X, Jiao Y, Lin L, Chen J, Yin D, Song E, Liu Q: miR-27a regulates endothelial differentiation of breast cancer stem like cells. Oncogene. 2013, 10: Jun
Google Scholar
Mertens-Talcott SU1, Chintharlapalli S, Li X, Safe S: The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res. 2007, 15;67 (22): 11001-11.
Article
Google Scholar
Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Vlassov A, Grimmond SM, Cloonan N: miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA. 2013, 19 (12): 1767-80. 10.1261/rna.042143.113.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O'Day E, Chowdhury D, Dykxhoorn DM, Tsai P, Hofmann O, Becker KG, Gorospe M, Hide W, Lieberman J: miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Mol Cell. 2009, 35 (5): 610-625. 10.1016/j.molcel.2009.08.020.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS: MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009, 137 (4): 647-658. 10.1016/j.cell.2009.02.038.
Article
CAS
PubMed
Google Scholar
Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB: Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009, 284 (23): 15676-15684. 10.1074/jbc.M809787200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R, Consortium GO: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32 (Database): D258-D261.
CAS
PubMed
Google Scholar
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M: Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014, 42 (Database): D199-205.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nishimura D: BioCarta. Biotech Software Internet Report. 2001, 2 (3): 117-120. 10.1089/152791601750294344.
Article
Google Scholar
Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L, D'Eustachio P: The Reactome pathway knowledgebase. Nucleic Acids Res. 2014, 42 (Database): 472-7.
Article
Google Scholar
[http://acsn.curie.fr]
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995, 57 (1): 289-300.
Google Scholar
Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, Watson SJ, Meng F: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 2005, 33 (20): e175-10.1093/nar/gni179.
Article
PubMed Central
PubMed
Google Scholar
Wu ZI RA, Gentleman R, Martinez-Murillo F, Spencer F: Model-based background adjustment for oligonucleotide expression arrays. Journal of the American Statistical Association. 2004, 99: 909-917. 10.1198/016214504000000683.
Article
Google Scholar