Henrissat B: A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991, 280: 309-316.
Article
PubMed
CAS
PubMed Central
Google Scholar
Coutinho PM, Henrissat B: Carbohydrate-Active Enzymes server. [http://afmb.cnrs-mrs.fr/CAZY/]
Henrissat B, Bairoch A: Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996, 316: 695-696.
Article
PubMed
PubMed Central
Google Scholar
Henrissat B, Davies G: Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997, 7: 637-644. 10.1016/S0959-440X(97)80072-3.
Article
PubMed
CAS
Google Scholar
McCarter JD, Withers SG: Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol. 1994, 4: 885-892. 10.1016/0959-440X(94)90271-2.
Article
PubMed
CAS
Google Scholar
Davies G, Henrissat B: Structures and mechanisms of glycosyl hydrolases. Structure. 1995, 3: 853-859. 10.1016/S0969-2126(01)00220-9.
Article
PubMed
CAS
Google Scholar
Henrissat B, Bairoch A: New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993, 293: 781-788.
Article
PubMed
CAS
PubMed Central
Google Scholar
Naumov DG, Doroshenko VG: β-Fructosidases: a new superfamily of glycosyl hydrolases. Mol Biol (Engl Tr). 1998, 32: 761-766.
CAS
Google Scholar
Naumoff DG: Conserved sequence motifs in levansucrases and bifunctional β-xylosidases and α-L-arabinases. FEBS Lett. 1999, 448: 177-179. 10.1016/S0014-5793(99)00369-5.
Article
PubMed
CAS
Google Scholar
Naumoff DG: β-Fructosidase superfamily: homology with some α-L-arabinases and β-D-xylosidases. Proteins. 2001, 42: 66-76. 10.1002/1097-0134(20010101)42:1<66::AID-PROT70>3.0.CO;2-4.
Article
PubMed
CAS
Google Scholar
Pons T, Naumoff DG, Martínez-Fleites C, Hernández L: Three acidic residues at the active site in the β-propeller architecture for the glycoside hydrolase families 32, 43, 62, and 68. Proteins. 2004, 54: 424-432. 10.1002/prot.10604.
Article
PubMed
CAS
Google Scholar
Oslancová A, Janeček Š: Oligo-1, 6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region. Cell Mol Life Sci. 2002, 59: 1945-1959. 10.1007/PL00012517.
Article
PubMed
Google Scholar
Janeček Š, Svensson B, MacGregor EA: Relation between domain evolution, specificity, and taxonomy of the α-amylase family members containing a C-terminal starch-binding domain. Eur J Biochem. 2003, 270: 635-645. 10.1046/j.1432-1033.2003.03404.x.
Article
PubMed
Google Scholar
Sarçabal P, Remaud-Simeon M, Willemot R, Potocki de Montalk G, Svensson B, Monsan P: Identification of key amino acid residues in Neisseria polysaccharea amylosucrase. FEBS Lett. 2000, 474: 33-37. 10.1016/S0014-5793(00)01567-2.
Article
PubMed
Google Scholar
Berezina OV, Lunina NA, Zverlov VV, Naumoff DG, Liebl W, Velikodvorskaia GA: A cluster of Thermotoga neapolitana genes involved in the degradation of starch and maltodextins: the molecular structure of the locus. Mol Biol (Engl Tr). 2003, 37: 801-809.
CAS
Google Scholar
Kuriki T, Imanaka T: The concept of the α-amylase family: structural similarity and common catalytic mechanism. J Biosci Bioeng. 1999, 87: 557-565. 10.1016/S1389-1723(99)80114-5.
Article
PubMed
CAS
Google Scholar
Svensson B: Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol Biol. 1994, 25: 141-157. 10.1007/BF00023233.
Article
PubMed
CAS
Google Scholar
Janeček Š, Lévêque E, Belarbi A, Haye B: Close evolutionary relatedness of α-amylases from Archaea and plants. J Mol Evol. 1999, 48: 421-426. 10.1007/PL00006486.
Article
PubMed
Google Scholar
van der Veen BA, Uitdehaag JC, Dijkstra BW, Dijkhuizen L: Engineering of cyclodextrin glycosyltransferase reaction and product specificity. Biochim Biophys Acta. 2000, 1543: 336-360.
Article
PubMed
CAS
Google Scholar
Dagnall BH, Paulsen IT, Saier JrMH: The DAG family of glycosyl hydrolases combines two previously identified protein families. Biochem J. 1995, 311: 349-350.
Article
PubMed
CAS
PubMed Central
Google Scholar
Naumoff DG: Sequence analysis and classification of α-galactosidases. International Summer School "From Genome to Life: Structural, Functional and Evolutionary Approaches". Cargèse, Corsica, France, 40-July 15–27, 2002, [http://www-archbac.u-psud.fr/Meetings/cargese2002/abstracts/NAUMOFF.html]
Naumoff DG: α-Galactosidase superfamily: phylogenetic analysis and homology with some α-glucosidases. 5th Carbohydrate Bioengineering Meeting, University Hospital Groningen. Groningen, The Netherlands, 32-April 6–9, 2003
Naumoff DG: Phylogenetic analysis of α-galactosidases from GH27 family. Mol Biol (Engl Tr). 2004, 38: 388-399.
Article
CAS
Google Scholar
Naumoff DG: The α-galactosidase superfamily: sequence based classification of α-galactosidases and related glycosidases. Proceedings of The Fourth International Conference on Bioinformatics of Genome Regulation and Structure, July 25–30. 2004, 1: 315-318. [http://www.bionet.nsc.ru/meeting/bgrs2004/tom1.pdf] . Novosibirsk. Russia
Google Scholar
Henrissat B: Glycosidase families. Biochem Soc Trans. 1998, 26: 153-156.
Article
PubMed
CAS
Google Scholar
Rigden DJ: Iterative database searches demonstrate that glycoside hydrolase families 27, 31, 36 and 66 share a common evolutionary origin with family 13. FEBS Lett. 2002, 523: 17-22. 10.1016/S0014-5793(02)02879-X.
Article
PubMed
CAS
Google Scholar
Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI: A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science. 2003, 299: 2074-2076. 10.1126/science.1080029.
Article
PubMed
CAS
Google Scholar
Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP, Weatherford J, Buhler JD, Gordon JI: Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005, 307: 1955-1959. 10.1126/science.1109051.
Article
PubMed
CAS
Google Scholar
Smith KA, Salyers AA: Characterization of a neopullulanase and an α-glucosidase from Bacteroides thetaiotaomicron 95-1. J Bacteriol. 1991, 173: 2962-2968.
PubMed
CAS
PubMed Central
Google Scholar
D'Elia JN, Salyers AA: Contribution of a neopullulanase, a pullulanase, and an α-glucosidase to growth of Bacteroides thetaiotaomicron on starch. J Bacteriol. 1996, 178: 7173-7179.
PubMed
PubMed Central
Google Scholar
Reeves AR, Wang GR, Salyers AA: Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol. 1997, 179: 643-649.
PubMed
CAS
PubMed Central
Google Scholar
Shipman JA, Cho KH, Siegel HA, Salyers AA: Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol. 1999, 181: 7206-7211.
PubMed
CAS
PubMed Central
Google Scholar
Cho KH, Salyers AA: Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron. J Bacteriol. 2001, 183: 7224-7230. 10.1128/JB.183.24.7224-7230.2001.
Article
PubMed
CAS
PubMed Central
Google Scholar
D'Elia JN, Salyers AA: Effect of regulatory protein levels on utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol. 1996, 178: 7180-7186.
PubMed
PubMed Central
Google Scholar
Cho KH, Cho D, Wang GR, Salyers AA: New regulatory gene that contributes to control of Bacteroides thetaiotaomicron starch utilization genes. J Bacteriol. 2001, 183: 7198-7205. 10.1128/JB.183.24.7198-7205.2001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wei G, Pan L, Du H, Chen J, Zhao L: ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J Microbiol Methods. 2004, 59: 91-108. 10.1016/j.mimet.2004.06.007.
Article
PubMed
CAS
Google Scholar
Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O'Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL: The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002, 298: 129-149. 10.1126/science.1076181.
Article
PubMed
CAS
Google Scholar
Gomez SM, Eiglmeier K, Segurens B, Dehoux P, Couloux A, Scarpelli C, Wincker P, Weissenbach J, Brey PT, Roth CW: Pilot Anopheles gambiae full-length cDNA study: sequencing and initial characterization of 35,575 clones. Genome Biol. 2005, 6: R39-10.1186/gb-2005-6-4-r39.
Article
PubMed
PubMed Central
Google Scholar
Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO: Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004, 304: 66-74. 10.1126/science.1093857. [http://www.ncbi.nlm.nih.gov/BLAST/Genome/EnvirSamplesBlast.html]
Article
PubMed
CAS
Google Scholar
Zona R, Chang-Pi-Hin F, O'Donohue MJ, Janeček Š: Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur J Biochem. 2004, 271: 2863-2872. 10.1111/j.1432-1033.2004.04144.x.
Article
PubMed
CAS
Google Scholar
Durand A, Hughes R, Roussel A, Flatman R, Henrissat B, Juge N: Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS Journal. 2005, 272: 1745-1755. 10.1111/j.1742-4658.2005.04606.x.
Article
PubMed
CAS
Google Scholar
Ahn YO, Mizutani M, Saino H, Sakata K: Furcatin hydrolase from Viburnum furcatum Blume is a novel disaccharide-specific acuminosidase in glycosyl hydrolase family 1. J Biol Chem. 2004, 279: 23405-23414. 10.1074/jbc.M311379200.
Article
PubMed
CAS
Google Scholar
Shallom D, Golan G, Shoham G, Shoham Y: Effect of dimer dissociation on activity and thermostability of the α-glucuronidase from Geobacillus stearothermophilus: dissecting the different oligomeric forms of family 67 glycoside hydrolases. J Bacteriol. 2004, 186: 6928-6937. 10.1128/JB.186.20.6928-6937.2004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Suzuki K, Taiyoji M, Sugawara N, Nikaidou N, Henrissat B, Watanabe T: The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem J. 1999, 343: 587-596. 10.1042/0264-6021:3430587.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science. 1997, 278: 631-637. 10.1126/science.278.5338.631. [http://www.ncbi.nlm.nih.gov/COG/]
Article
PubMed
CAS
Google Scholar
Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE: Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 2001, 29: 1097-1106. 10.1093/nar/29.5.1097.
Article
PubMed
CAS
PubMed Central
Google Scholar
Henrissat B, Romeu A: Families, superfamilies and subfamilies of glycosyl hydrolases. Biochem J. 1995, 311: 350-351.
Article
PubMed
CAS
PubMed Central
Google Scholar
Margolles-Clark E, Tenkanen M, Luonteri E, Penttilä M: Three α-galactosidase genes of Trichoderma reesei cloned by expression in yeast. Eur J Biochem. 1996, 240: 104-111. 10.1111/j.1432-1033.1996.0104h.x.
Article
PubMed
CAS
Google Scholar
Naumoff DG: Sequence analysis of glycosylhydrolases: β-fructosidase and α-galactosidase superfamilies. Glycoconj J. 2001, 18: 109-
Google Scholar
Garman SC, Hannick L, Zhu A, Garboczi DN: The 1.9 Å structure of α-N-acetylgalactosaminidase: molecular basis of glycosidase deficiency diseases. Structure. 2002, 10: 425-434. 10.1016/S0969-2126(02)00726-8.
Article
PubMed
CAS
Google Scholar
Fujimoto Z, Kaneko S, Momma M, Kobayashi H, Mizuno H: Crystal structure of rice α-galactosidase complexed with D-galactose. J Biol Chem. 2003, 278: 20313-20318. 10.1074/jbc.M302292200.
Article
PubMed
CAS
Google Scholar
Garman SC, Garboczi DN: The molecular defect leading to Fabry disease: structure of human α-galactosidase. J Mol Biol. 2004, 337: 319-335. 10.1016/j.jmb.2004.01.035.
Article
PubMed
CAS
Google Scholar
Golubev AM, Nagem RAP, Brandão Neto, Neustroev KN, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Savel'ev AN, Polikarpov I: Crystal structure of α-galactosidase from Trichoderma reesei and its complex with galactose: implications for catalytic mechanism. J Mol Biol. 2004, 339: 413-422. 10.1016/j.jmb.2004.03.062.
Article
PubMed
CAS
Google Scholar
Lovering AL, Lee SS, Kim Y-W, Withers SG, Strynadka NCJ: Mechanistic and structural analysis of a family 31 α-glycosidase and its glycosyl-enzyme intermediate. J Biol Chem. 2005, 280: 2105-2115. 10.1074/jbc.M410468200.
Article
PubMed
CAS
Google Scholar
Höcker B, Jürgens C, Wilmanns M, Sterner R: Stability, catalytic versatility and evolution of the (βα)8-barrel fold. Curr Opin Biotechnol. 2001, 12: 376-381. 10.1016/S0958-1669(00)00230-5.
Article
PubMed
Google Scholar
Höcker B, Beismann-Driemeyer S, Hettwer S, Lustig A, Sterner R: Dissection of a (βα)8-barrel enzyme into two folded halves. Nat Struct Biol. 2001, 8: 32-36. 10.1038/83021.
Article
PubMed
Google Scholar
Gerlt JA, Babbitt PC: Barrels in pieces?. Nat Struct Biol. 2001, 8: 5-7. 10.1038/83048.
Article
PubMed
CAS
Google Scholar
Lang D, Thoma R, Henn-Sax M, Sterner R, Wilmanns M: Structural evidence for evolution of the β/α barrel scaffold by gene duplication and fusion. Science. 2000, 289: 1546-1550. 10.1126/science.289.5484.1546.
Article
PubMed
CAS
Google Scholar
Farber GK, Petsko GA: The evolution of α/β barrel enzymes. Trends Biochem Sci. 1990, 15: 228-234. 10.1016/0968-0004(90)90035-A.
Article
PubMed
CAS
Google Scholar
Wierenga RK: The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett. 2001, 492: 193-198. 10.1016/S0014-5793(01)02236-0.
Article
PubMed
CAS
Google Scholar
Nagano N, Porter CT, Thornton JM: The (β/α)8 glycosidases: sequence and structure analyses suggest distant evolutionary relationships. Protein Eng. 2001, 14: 845-855. 10.1093/protein/14.11.845.
Article
PubMed
CAS
Google Scholar
Quaroni A, Semenza G: Partial amino acid sequences around the essential carboxylate in the active sites of the intestinal sucrase-isomaltase complex. J Biol Chem. 1976, 251: 3250-3253.
PubMed
CAS
Google Scholar
Hermans MMP, Kroos MA, van Beeumen J, Oostra BA, Reuser AJJ: Human lysosomal α-glucosidase. Characterization of the catalytic site. J Biol Chem. 1991, 266: 13507-13512.
PubMed
CAS
Google Scholar
Iwanami S, Matsui H, Kimura A, Ito H, Mori H, Honma M, Chiba S: Chemical modification and amino acid sequence of active site in sugar beet α-glucosidase. Biosci Biotechnol Biochem. 1995, 59: 459-463.
Article
PubMed
CAS
Google Scholar
Kimura A, Takata M, Fukushi Y, Mori H, Matsui H, Chiba S: A catalytic amino acid and primary structure of active site in Aspergillus niger α-glucosidase. Biosci Biotechnol Biochem. 1997, 61: 1091-1098.
Article
PubMed
CAS
Google Scholar
Hart DO, He S, Chany CJ, Withers SG, Sims PF, Sinnott ML, Brumer H: Identification of Asp-130 as the catalytic nucleophile in the main α-galactosidase from Phanerochaete chrysosporium, a family 27 glycosyl hydrolase. Biochemistry. 2000, 39: 9826-9836. 10.1021/bi0008074.
Article
PubMed
CAS
Google Scholar
Ly HD, Howard S, Shum K, He S, Zhu A, Withers SG: The synthesis, testing and use of 5-fluoro-alpha-D-galactosyl fluoride to trap an intermediate on green coffee bean α-galactosidase and identify the catalytic nucleophile. Carbohydr Res. 2000, 329: 539-547. 10.1016/S0008-6215(00)00214-7.
Article
PubMed
CAS
Google Scholar
Okuyama M, Okuno A, Shimizu N, Mori H, Kimura A, Chiba S: Carboxyl group of residue Asp647 as possible proton donor in catalytic reaction of α-glucosidase from Schizosaccharomyces pombe. Eur J Biochem. 2001, 268: 2270-2280. 10.1046/j.1432-1327.2001.02104.x.
Article
PubMed
CAS
Google Scholar
Kashiwabara S, Azuma S, Tsuduki M, Suzuki Y: The primary structure of the subunit in Bacillus thermoamyloliquefaciens KP1071 molecular weight 540,000 homohexameric α-glucosidase II belonging to the glycosyl hydrolase family 31. Biosci Biotechnol Biochem. 2000, 64: 1379-1393. 10.1271/bbb.64.1379.
Article
PubMed
CAS
Google Scholar
Hughes CV, Malki G, Loo CY, Tanner ACR, Ganeshkumar N: Cloning and expression of α-D-glucosidase and N-acetyl-β-glucosaminidase from the periodontal pathogen, Tannerella forsythensis (Bacteroides forsythus). Oral Microbiol Immunol. 2003, 18: 309-312. 10.1034/j.1399-302X.2003.00091.x.
Article
PubMed
CAS
Google Scholar
Coutinho PM, Stam M, Blanc E, Henrissat B: Why are there so many carbohydrate-active enzyme-related genes in plants?. Trends Plant Sci. 2003, 8: 563-565. 10.1016/j.tplants.2003.10.002.
Article
PubMed
CAS
Google Scholar
Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Church DM, DiCuccio M, Edgar R, Federhen S, Helmberg W, Kenton DL, Khovayko O, Lipman DJ, Madden TL, Maglott DR, Ostell J, Pontius JU, Pruitt KD, Schuler GD, Schriml LM, Sequeira E, Sherry ST, Sirotkin K, Starchenko G, Suzek TO, Tatusov R, Tatusova TA, Wagner L, Yaschenko E: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2005, 33: D39-45. 10.1093/nar/gki062. [http://www.ncbi.nlm.nih.gov/]
Article
PubMed
CAS
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hall TA: Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt. Nucleic Acids Symp Ser. 1999, 41: 95-98. [http://www.mbio.ncsu.edu/BioEdit/bioedit.html]
CAS
Google Scholar
Felsenstein J: PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics. 1989, 5: 164-166. [http://evolution.gs.washington.edu/phylip.html]
Google Scholar
Page RDM: TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996, 12: 357-358. [http://taxonomy.zoology.gla.ac.uk/rod/treeview.html]
PubMed
CAS
Google Scholar
Naumoff DG, Livshits VA: Molecular structure of the Lactobacillus plantarum sucrose utilization locus: comparison with Pediococcus pentosaceus. Mol Biol (Engl Tr). 2001, 35: 15-22.
Article
CAS
Google Scholar
Peitsch MC: ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996, 24: 274-279. [http://swissmodel.expasy.org/]
Article
PubMed
CAS
Google Scholar
Kelley LA, MacCallum RM, Sternberg MJ: Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol. 2000, 299: 499-520. 10.1006/jmbi.2000.3741. [http://www.sbg.bio.ic.ac.uk/~3dpssm/]
Article
PubMed
CAS
Google Scholar
Garnier J, Gibrat JF, Robson B: GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 1996, 266: 540-553. [http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html]
Article
PubMed
CAS
Google Scholar
Kneller DG, Cohen FE, Langridge R: Improvements in protein secondary structure prediction by an enhanced neural network. J Mol Biol. 1990, 214: 171-182. 10.1016/0022-2836(90)90154-E. [http://www.cmpharm.ucsf.edu/~nomi/nnpredict-instrucs.html]
Article
PubMed
CAS
Google Scholar
Comments
View archived comments (1)