Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S: The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997, 390 (6657): 249-256. 10.1038/36786.
Article
CAS
PubMed
Google Scholar
Ermolaeva MD, White O, Salzberg SL: Prediction of operons in microbial genomes. Nucleic Acids Res. 2001, 29 (5): 1216-1221. 10.1093/nar/29.5.1216.
Article
CAS
PubMed Central
PubMed
Google Scholar
Huerta AM, Salgado H, Thieffry D, Collado-Vides J: RegulonDB: a database on transcriptional regulation in Escherichia coli. Nucleic Acids Res. 1998, 26 (1): 55-59. 10.1093/nar/26.1.55.
Article
CAS
PubMed Central
PubMed
Google Scholar
Salgado H, Moreno-Hagelsieb G, Smith TF, Collado-Vides J: Operons in Escherichia coli : genomic analyses and predictions. Proc Natl Acad Sci USA. 2000, 97 (12): 6652-6657. 10.1073/pnas.110147297.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang L, Trawick JD, Yamamoto R, Zamudio C: Genome-wide operon prediction in Staphylococcus aureus. Nucleic Acids Res. 2004, 32 (12): 3689-3702. 10.1093/nar/gkh694.
Article
CAS
PubMed Central
PubMed
Google Scholar
Westover BP, Buhler JD, Sonnenburg JL, Gordon JI: Operon prediction without a training set. Bioinformatics. 2005, 21 (7): 880-888. 10.1093/bioinformatics/bti123.
Article
CAS
PubMed
Google Scholar
Yada T, Nakao M, Totoki Y, Nakai K: Modeling and predicting transcriptional units of Escherichia coli genes using hidden Markov models. Bioinformatics. 1999, 15 (12): 987-993. 10.1093/bioinformatics/15.12.987.
Article
CAS
PubMed
Google Scholar
Ogasawara N, Moriya S, Yoshikawa H: Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. IV. Transcription of the oriC region and expression of DNA gyrase genes and other open reading frames. Nucleic Acids Res. 1985, 13 (7): 2267-2279. 10.1093/nar/13.7.2267.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schujman GE, Paoletti L, Grossman AD, de Mendoza D: FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. Dev Cell. 2003, 4 (5): 663-672. 10.1016/S1534-5807(03)00123-0.
Article
CAS
PubMed
Google Scholar
Moreno-Campuzano S, Janga SC, Perez-Rueda E: Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes – a genomic approach. BMC genomics. 2006, 7: 147-10.1186/1471-2164-7-147.
Article
PubMed Central
PubMed
Google Scholar
Stormo GD: DNA binding sites: representation and discovery. Bioinformatics. 2000, 16 (1): 16-23. 10.1093/bioinformatics/16.1.16.
Article
CAS
PubMed
Google Scholar
Qiu P, Qin L, Sorrentino RP, Greene JR, Wang L, Partridge NC: Comparative promoter analysis and its application in analysis of PTH-regulated gene expression. J Mol Biol. 2003, 326 (5): 1327-1336. 10.1016/S0022-2836(03)00053-6.
Article
CAS
PubMed
Google Scholar
Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA: Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res. 1998, 26 (1): 362-367. 10.1093/nar/26.1.362.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kobayashi K, Ogura M, Yamaguchi H, Yoshida K, Ogasawara N, Tanaka T, Fujita Y: Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. J Bacteriol. 2001, 183 (24): 7365-7370. 10.1128/JB.183.24.7365-7370.2001.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fujita Y, Fujita T: The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Proc Natl Acad Sci USA. 1987, 84 (13): 4524-4528. 10.1073/pnas.84.13.4524.
Article
CAS
PubMed Central
PubMed
Google Scholar
Henikoff S, Haughn GW, Calvo JM, Wallace JC: A large family of bacterial activator proteins. Proc Natl Acad Sci USA. 1988, 85 (18): 6602-6606. 10.1073/pnas.85.18.6602.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A: False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics. 2005, 21 (13): 3017-3024. 10.1093/bioinformatics/bti448.
Article
CAS
PubMed
Google Scholar
Gao G, Le D, Huang L, Lu H, Narumi I, Hua Y: Internal promoter characterization and expression of the Deinococcus radiodurans pprI-folP gene cluster. FEMS Microbiol Lett. 2006, 257 (2): 195-201. 10.1111/j.1574-6968.2006.00169.x.
Article
CAS
PubMed
Google Scholar
Asai K, Takamatsu H, Iwano M, Kodama T, Watabe K, Ogasawara N: The Bacillus subtilis yabQ gene is essential for formation of the spore cortex. Microbiology. 2001, 147 (Pt 4): 919-927.
Article
CAS
PubMed
Google Scholar
Huang X, Helmann JD: Identification of target promoters for the Bacillus subtilis sigma X factor using a consensus-directed search. J Mol Biol. 1998, 279 (1): 165-173. 10.1006/jmbi.1998.1765.
Article
CAS
PubMed
Google Scholar
Levin PA, Losick R: Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J Bacteriol. 1994, 176 (5): 1451-1459.
CAS
PubMed Central
PubMed
Google Scholar
Hecker M, Schumann W, Volker U: Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol. 1996, 19 (3): 417-428. 10.1046/j.1365-2958.1996.396932.x.
Article
CAS
PubMed
Google Scholar
Wiegeshoff F, Beckering CL, Debarbouille M, Marahiel MA: Sigma L is important for cold shock adaptation of Bacillus subtilis. J Bacteriol. 2006, 188 (8): 3130-3133. 10.1128/JB.188.8.3130-3133.2006.
Article
CAS
PubMed Central
PubMed
Google Scholar
Marquez-Magana LM, Chamberlin MJ: Characterization of the sigD transcription unit of Bacillus subtilis. J Bacteriol. 1994, 176 (8): 2427-2434.
CAS
PubMed Central
PubMed
Google Scholar
Horsburgh MJ, Moir A: Sigma M, an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentrations of salt. Mol Microbiol. 1999, 32 (1): 41-50. 10.1046/j.1365-2958.1999.01323.x.
Article
CAS
PubMed
Google Scholar
Turner MS, Helmann JD: Mutations in multidrug efflux homologs, sugar isomerases, and antimicrobial biosynthesis genes differentially elevate activity of the sigma(X) and sigma(W) factors in Bacillus subtilis. J Bacteriol. 2000, 182 (18): 5202-5210. 10.1128/JB.182.18.5202-5210.2000.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science. 1997, 278 (5338): 631-637. 10.1126/science.278.5338.631.
Article
CAS
PubMed
Google Scholar
Tovar-Rojo F, Cabrera-Martinez RM, Setlow B, Setlow P: Studies on the mechanism of the osmoresistance of spores of Bacillus subtilis. J Applied Microbiol. 2003, 95 (1): 167-179. 10.1046/j.1365-2672.2003.01958.x.
Article
CAS
Google Scholar
Setlow P: Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu Rev Microbiol. 1995, 49: 29-54. 10.1146/annurev.mi.49.100195.000333.
Article
CAS
PubMed
Google Scholar
Hilbert DW, Piggot PJ: Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev. 2004, 68 (2): 234-262. 10.1128/MMBR.68.2.234-262.2004.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nakatani Y, Nicholson WL, Neitzke KD, Setlow P, Freese E: Sigma-G RNA polymerase controls forespore-specific expression of the glucose dehydrogenase operon in Bacillus subtilis. Nucleic Acids Res. 1989, 17 (3): 999-1017. 10.1093/nar/17.3.999.
Article
CAS
PubMed Central
PubMed
Google Scholar
Magill NG, Cowan AE, Leyva-Vazquez MA, Brown M, Koppel DE, Setlow P: Analysis of the relationship between the decrease in pH and accumulation of 3-phosphoglyceric acid in developing forespores of Bacillus species. J Bacteriol. 1996, 178 (8): 2204-2210.
CAS
PubMed Central
PubMed
Google Scholar
Lorca G, Winnen B, Saier MH: Identification of the L-aspartate transporter in Bacillus subtilis. J Bacteriol. 2003, 185 (10): 3218-3222. 10.1128/JB.185.10.3218-3222.2003.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sa-Nogueira I, Mota LJ: Negative regulation of L-arabinose metabolism in Bacillus subtilis : characterization of the araR (araC) gene. J Bacteriol. 1997, 179 (5): 1598-1608.
CAS
PubMed Central
PubMed
Google Scholar
Hoa TT, Tortosa P, Albano M, Dubnau D: Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol Microbiol. 2002, 43 (1): 15-26. 10.1046/j.1365-2958.2002.02727.x.
Article
CAS
PubMed
Google Scholar
Kearns DB, Chu F, Branda SS, Kolter R, Losick R: A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol. 2005, 55 (3): 739-749. 10.1111/j.1365-2958.2004.04440.x.
Article
CAS
PubMed
Google Scholar
Sonenshein AL, Hoch JA, Losick RM: Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press. 2001
Google Scholar
Mirel DB, Chamberlin MJ: The Bacillus subtilis flagellin gene (hag) is transcribed by the sigma 28 form of RNA polymerase. J Bacteriol. 1989, 171 (6): 3095-3101.
CAS
PubMed Central
PubMed
Google Scholar
Derre I, Rapoport G, Devine K, Rose M, Msadek T: ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol. 1999, 32 (3): 581-593. 10.1046/j.1365-2958.1999.01374.x.
Article
CAS
PubMed
Google Scholar
Msadek T, Dartois V, Kunst F, Herbaud ML, Denizot F, Rapoport G: ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol. 1998, 27 (5): 899-914. 10.1046/j.1365-2958.1998.00735.x.
Article
CAS
PubMed
Google Scholar
Guillen N, Weinrauch Y, Dubnau DA: Cloning and characterization of the regulatory Bacillus subtilis competence genes comA and comB. J Bacteriol. 1989, 171 (10): 5354-5361.
CAS
PubMed Central
PubMed
Google Scholar
Gaballa A, Helmann JD: Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol. 1998, 180 (22): 5815-5821.
CAS
PubMed Central
PubMed
Google Scholar
Ollinger J, Song KB, Antelmann H, Hecker M, Helmann JD: Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol. 2006, 188 (10): 3664-3673. 10.1128/JB.188.10.3664-3673.2006.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yoshida KI, Aoyama D, Ishio I, Shibayama T, Fujita Y: Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. J Bacteriol. 1997, 179 (14): 4591-4598.
CAS
PubMed Central
PubMed
Google Scholar
Ebbole DJ, Zalkin H: Bacillus subtilis pur operon expression and regulation. J Bacteriol. 1989, 171 (4): 2136-2141.
CAS
PubMed Central
PubMed
Google Scholar
Gardan R, Rapoport G, Debarbouille M: Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. J Mol Biol. 1995, 249 (5): 843-856. 10.1006/jmbi.1995.0342.
Article
CAS
PubMed
Google Scholar
Belitsky BR, Sonenshein AL: An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis. Proc Natl Acad Sci USA. 1999, 96 (18): 10290-10295. 10.1073/pnas.96.18.10290.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fisher SH: Regulation of nitrogen metabolism in Bacillus subtilis : vive la difference!. Mol Microbiol. 1999, 32 (2): 223-232. 10.1046/j.1365-2958.1999.01333.x.
Article
CAS
PubMed
Google Scholar
Magasanik B: Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet. 1982, 16: 135-168. 10.1146/annurev.ge.16.120182.001031.
Article
CAS
PubMed
Google Scholar
Kennett RH, Sueoka N: Gene expression during outgrowth of Bacillus subtilis spores. The relationship between gene order on the chromosome and temporal sequence of enzyme synthesis. J Mol Biol. 1971, 60 (1): 31-44. 10.1016/0022-2836(71)90445-1.
Article
CAS
PubMed
Google Scholar
Cervin MA, Lewis RJ, Brannigan JA, Spiegelman GB: The Bacillus subtilis regulator SinR inhibits spoIIG promoter transcription in vitro without displacing RNA polymerase. Nucleic Acids Res. 1998, 26 (16): 3806-3812. 10.1093/nar/26.16.3806.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hanson RS, Cox DP: Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes. J Bacteriol. 1967, 93 (6): 1777-1787.
CAS
PubMed Central
PubMed
Google Scholar
Quackenbush J: Microarray data normalization and transformation. Nat Genet. 2002, 496-501. 10.1038/ng1032. 32 Suppl
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002, 30 (4): e15-10.1093/nar/30.4.e15.
Article
PubMed Central
PubMed
Google Scholar
Dudoit S, Fridlyand J, Speed T: Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Ass. 2002, 97 (457): 77-87. 10.1198/016214502753479248.
Article
CAS
Google Scholar
TREBAX. [http://kanaya.naist.jp/~skanaya/Web/software/trebax/trebax2.html]
DBTBS. [http://dbtbs.hgc.jp/]
Benjamini Y, Hochberg Y: Controlling the false discovery rate – a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995, 57 (1): 289-300.
Google Scholar