Mahajan S, Tuteja N: Cold, salinity and drought stresses: An overview. Arch Biochem Biophys. 2005, 444: 139-158. 10.1016/j.abb.2005.10.018.
Article
CAS
PubMed
Google Scholar
Jaglo-Ottosen K, Gilmour S, Zarka D, Schabenberger O, Thomashow M: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science. 1998, 280: 104-106. 10.1126/science.280.5360.104.
Article
CAS
PubMed
Google Scholar
Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol. 1999, 17: 287-291. 10.1038/7036.
Article
CAS
PubMed
Google Scholar
Hsieh T, Lee J, Charng Y, Chan M: Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 2002, 130: 618-626. 10.1104/pp.006783.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L: Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci, USA. 2006, 103: 12987-12992. 10.1073/pnas.0604882103.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bartels D: Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance?. Trends Plant Sci. 2001, 6: 284-286. 10.1016/S1360-1385(01)01983-5.
Article
CAS
PubMed
Google Scholar
Zhu J: Plant salt tolerance. Trends Plant Sci. 2001, 6: 66-71. 10.1016/S1360-1385(00)01838-0.
Article
CAS
PubMed
Google Scholar
Apse M, Aharon G, Snedden W, Blumwald E: Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 1999, 285: 1256-1258. 10.1126/science.285.5431.1256.
Article
CAS
PubMed
Google Scholar
Gupta A, Heinen J, Holaday A, Burke J, Allen R: Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide-dismutase. Proc Natl Acad Sci, USA. 1993, 90: 1629-1633. 10.1073/pnas.90.4.1629.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wehmeyer N, Vierling E: The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 2000, 122: 1099-1108. 10.1104/pp.122.4.1099.
Article
CAS
PubMed Central
PubMed
Google Scholar
Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K: Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci. 2004, 166: 919-928. 10.1016/j.plantsci.2003.12.007.
Article
Google Scholar
Rodrigues SM, Andrade MO, Gomes APS, DaMatta FM, Baracat-Pereira MC, Fontes EPB: Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exp Bot. 2006, 57: 1909-1918. 10.1093/jxb/erj132.
Article
CAS
PubMed
Google Scholar
Alvim FC, Carolino SMB, Cascardo JCM, Nunes CC, Martinez CA, Otoni WC, Fontes EPB: Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol. 2001, 126: 1042-1054. 10.1104/pp.126.3.1042.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bertolotti A, Zhang YH, Hendershot LM, Harding HP, Ron D: Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000, 2: 326-332. 10.1038/35014014.
Article
CAS
PubMed
Google Scholar
Okamura K, Kimata Y, Higashio H, Tsuru A, Kohno K: Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem Biophys Res Comm. 2000, 279: 445-450. 10.1006/bbrc.2000.3987.
Article
CAS
PubMed
Google Scholar
Kimata Y, Kimata YL, Shimizu Y, Abe H, Farcasanu RC, Takeuchi M, Rose MD, Kohno K: Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins. Mol Biol Cell. 2003, 14: 2559-2569. 10.1091/mbc.E02-11-0708.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno K: A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire 1. J Cell Biol. 2004, 167: 445-456. 10.1083/jcb.200405153.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gething MJ: Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol. 1999, 10: 465-472. 10.1006/scdb.1999.0318.
Article
CAS
PubMed
Google Scholar
Kleizen B, Braakman I: Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol. 2004, 16: 343-349. 10.1016/j.ceb.2004.06.012.
Article
CAS
PubMed
Google Scholar
Ma YJ, Hendershot LM: ER chaperone functions during normal and stress conditions. J Chem Neuroanat. 2004, 28: 51-65. 10.1016/j.jchemneu.2003.08.007.
Article
CAS
PubMed
Google Scholar
Sanders SL, Whitfield KM, Vogel JP, Rose MD, Schekman RW: Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell. 1992, 69: 353-365. 10.1016/0092-8674(92)90415-9.
Article
CAS
PubMed
Google Scholar
Hamman BD, Hendershot LM, Johnson AE: BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell. 1998, 92: 747-758. 10.1016/S0092-8674(00)81403-8.
Article
CAS
PubMed
Google Scholar
Lievremont JP, Rizzuto R, Hendershot L, Meldolesi J: BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J Biol Chem. 1997, 272: 30873-30879. 10.1074/jbc.272.49.30873.
Article
CAS
PubMed
Google Scholar
Nishikawa S, Fewell SW, Kato Y, Brodsky JL, Endo T: Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol. 2001, 153: 1061-1069. 10.1083/jcb.153.5.1061.
Article
CAS
PubMed Central
PubMed
Google Scholar
Molinari M, Galli C, Piccaluga V, Pieren M, Paganetti P: Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol. 2002, 158: 247-257. 10.1083/jcb.200204122.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shen JS, Chen X, Hendershot L, Prywes R: ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of golgi localization signals. Dev Cell. 2002, 3: 99-111. 10.1016/S1534-5807(02)00203-4.
Article
CAS
PubMed
Google Scholar
Rao RV, Bredesen DE: Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol. 2004, 16: 653-662. 10.1016/j.ceb.2004.09.012.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang XZ, Harding HP, Zhang YH, Jolicoeur EM, Kuroda M, Ron D: Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 1998, 17: 5708-5717. 10.1093/emboj/17.19.5708.
Article
CAS
PubMed Central
PubMed
Google Scholar
Harding HP, Zhang YH, Bertolotti A, Zeng HQ, Ron D: Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell. 2000, 5: 897-904. 10.1016/S1097-2765(00)80330-5.
Article
CAS
PubMed
Google Scholar
Haze K, Yoshida H, Yanagi H, Yura T, Mori K: Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999, 10: 3787-3799.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL: ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000, 6: 1355-1364. 10.1016/S1097-2765(00)00133-7.
Article
CAS
PubMed
Google Scholar
Koizumi N, Martinez IM, Kimata Y, Kohno K, Sano H, Chrispeels MJ: Molecular characterization of two arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases. Plant Physiol. 2001, 127: 949-962. 10.1104/pp.127.3.949.
Article
CAS
PubMed Central
PubMed
Google Scholar
Iwata Y, Koizumi N: An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci. 2005, 102: 5280-5285. 10.1073/pnas.0408941102.
Article
CAS
PubMed Central
PubMed
Google Scholar
Martinez IM, Chrispeels MJ: Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell. 2003, 15: 561-576. 10.1105/tpc.007609.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kamauchi S, Nakatani H, Nakano C, Urade R: Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana. FEBS J. 2005, 272: 3461-3476. 10.1111/j.1742-4658.2005.04770.x.
Article
CAS
PubMed
Google Scholar
Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF: Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 2002, 130: 2129-2141. 10.1104/pp.008532.
Article
CAS
PubMed Central
PubMed
Google Scholar
Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 2002, 31: 279-292. 10.1046/j.1365-313X.2002.01359.x.
Article
CAS
PubMed
Google Scholar
Denekamp M, Smeekens SC: Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol. 2003, 132: 1415-1423. 10.1104/pp.102.019273.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cascardo JCM, Almeida RS, Buzeli RAA, Carolino SMB, Otoni WC, Fontes EPB: The phosphorylation state and expression of soybean BiP isoforms are differentially regulated following abiotic stresses. J Biol Chem. 2000, 275: 14494-14500. 10.1074/jbc.275.19.14494.
Article
CAS
PubMed
Google Scholar
Cascardo JCM, Buzeli RAA, Almeida RS, Otoni WC, Fontes EPB: Differential expression of the soybean BiP gene family. Plant Sci. 2001, 160: 273-281. 10.1016/S0168-9452(00)00384-8.
Article
CAS
PubMed
Google Scholar
Welihinda AA, Tirasophon W, Green SR, Kaufman RJ: Protein serine/threonine phosphatase Ptc2p negatively regulates the unfolded-protein response by dephosphorylating Ire1p kinase. Mol Cell Biol. 1998, 18: 1967-1977.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cox JS, Shamu CE, Walter P: Transcriptional induction of genes encoding endoplasmic-reticulum resident proteins requires a transmembrane protein-kinase. Cell. 1993, 73: 1197-1206. 10.1016/0092-8674(93)90648-A.
Article
CAS
PubMed
Google Scholar
Mori K, Ma WZ, Gething MJ, Sambrook J: A Transmembrane protein with a Cdc2+/Cdc28-related kinase-activity is required for signaling from the ER to the nucleus. Cell. 1993, 74: 743-756. 10.1016/0092-8674(93)90521-Q.
Article
CAS
PubMed
Google Scholar
Muller J, Piffanelli P, Devoto A, Miklis M, Elliott C, Ortmann B, Schulze-Lefert P, Panstruga R: Conserved ERAD-Like quality control of a plant polytopic membrane protein. Plant Cell. 2005, 17: 149-163. 10.1105/tpc.104.026625.
Article
PubMed Central
PubMed
Google Scholar
Kirst ME, Meyer DJ, Gibbon BC, Jung R, Boston RS: Identification and characterization of endoplasmic reticulum-associated degradation proteins differentially affected by endoplasmic reticulum stress. Plant Physiol. 2005, 138: 218-231. 10.1104/pp.105.060087.
Article
CAS
PubMed Central
PubMed
Google Scholar
Harding HP, Zhang YH, Ron D: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999, 397: 271-274. 10.1038/16729.
Article
CAS
PubMed
Google Scholar
Hu CAA, Delauney AJ, Verma DPS: A bifunctional enzyme (Delta-1-Pyrroline-5-Carboxylate Synthetase) catalyzes the 1st 2 steps in proline biosynthesis in plants. Proc Natl Acad Sci, USA. 1992, 89: 9354-9358. 10.1073/pnas.89.19.9354.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchishinozaki K, Wada K, Harada Y, Shinozaki K: Correlation between the induction of a gene for Delta(1)-Pyrroline-5-Carboxylate Synthetase and the accumulation of proline in Arabidopsis-thaliana under osmotic-stress. Plant J. 1995, 7: 751-760. 10.1046/j.1365-313X.1995.07050751.x.
Article
CAS
PubMed
Google Scholar
Buchanan CD, Lim SY, Salzman RA, Kagiampakis L, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt MM, Klein PE, Mullet JE: Sorghum bicolor's transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol. 2005, 58: 699-720. 10.1007/s11103-005-7876-2.
Article
CAS
PubMed
Google Scholar
Dejardin A, Sokolov LN, Kleczkowski LA: Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem J. 1999, 344: 503-509. 10.1042/0264-6021:3440503.
CAS
PubMed Central
PubMed
Google Scholar
Dixon DP, Cummins I, Cole DJ, Edwards R: Glutathione-mediated detoxification systems in plants. Cur Opin Plant Biol. 1998, 1: 258-266. 10.1016/S1369-5266(98)80114-3.
Article
CAS
Google Scholar
Edwards R, Dixon DP, Walbot V: Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 2000, 5: 193-198. 10.1016/S1360-1385(00)01601-0.
Article
CAS
PubMed
Google Scholar
Holmberg N, Bulow L: Improving stress tolerance in plants by gene transfer. Trends Plant Sci. 1998, 3: 61-66. 10.1016/S1360-1385(97)01163-1.
Article
Google Scholar
Torres-Schumann S, Godoy JA, Pintor-Toro JA: A probable lipid transfer protein gene is induced by Nacl in stems of tomato plants. Plant Mol Biol. 1992, 18: 749-757. 10.1007/BF00020016.
Article
CAS
PubMed
Google Scholar
Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K: A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 2004, 39: 863-876. 10.1111/j.1365-313X.2004.02171.x.
Article
CAS
PubMed
Google Scholar
Houston NL, Fan CZ, Xiang QY, Schulze JM, Jung R, Boston RS: Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiol. 2005, 137: 762-778. 10.1104/pp.104.056507.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dorner AJ, Wasley LC, Raney P, Haugejorden S, Green M, Kaufman RJ: The stress response in chinese-hamster ovary cells – Regulation of Erp72 and protein disulfide isomerase expression and secretion. J Biol Chem. 1990, 265: 22029-22034.
CAS
PubMed
Google Scholar
Dong JG, Fernandezmaculet JC, Yang SF: Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc Natl Acad Sci, USA. 1992, 89: 9789-9793. 10.1073/pnas.89.20.9789.
Article
CAS
PubMed Central
PubMed
Google Scholar
LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B: Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem. 2002, 277: 20446-20452. 10.1074/jbc.M111955200.
Article
CAS
PubMed
Google Scholar
MacMillan J: Biosynthesis of the gibberellin plant hormones. Nat Prod Rep. 1997, 14: 221-243. 10.1039/np9971400221.
Article
CAS
Google Scholar
Winkler RG, Helentjaris T: The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell. 1995, 7: 1307-1317. 10.1105/tpc.7.8.1307.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ludwig AA, Tenhaken R: A new cell wall located n-rich protein is strongly induced during the hypersensitive response in Glycine max L. Eur J Plant Pathol. 2001, 107: 323-336. 10.1023/A:1011202225323.
Article
CAS
Google Scholar
Reymond P, Weber H, Damond M, Farmer EE: Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell. 2000, 12: 707-719. 10.1105/tpc.12.5.707.
Article
CAS
PubMed Central
PubMed
Google Scholar
Anderson JV, Li QB, Haskell DW, Guy CL: Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold-acclimation. Plant Physiol. 1994, 104: 1359-1370. 10.1104/pp.104.4.1359.
Article
CAS
PubMed Central
PubMed
Google Scholar
Denecke J, Carlsson LE, Vidal S, Hoglund AS, Ek B, van Zeijl MJ, Sinjorgo KMC, Palva ET: The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell. 1995, 7: 391-406. 10.1105/tpc.7.4.391.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jia JP, Fu JJ, Zheng J, Zhou X, Huai JL, Wang JH, Wang M, Zhang Y, Chen XP, Zhang JP, Zhao JF, Su Z, Lv YP, Wang GY: Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. Plant J. 2006, 48: 710-727. 10.1111/j.1365-313X.2006.02905.x.
Article
CAS
PubMed
Google Scholar
Bernales S, Papa FR, Walter P: Intracellular Signaling by the Unfolded Protein Response. Annual Rev Cel Dev Biol. 2006, 22: 487-508. 10.1146/annurev.cellbio.21.122303.120200.
Article
CAS
Google Scholar
Fowler S, Thomashow MF: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell. 2002, 14: 1675-1690. 10.1105/tpc.003483.
Article
CAS
PubMed Central
PubMed
Google Scholar
Olsen AN, Ernst HA, Lo Leggio L, Skriver K: NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 2005, 10: 79-87. 10.1016/j.tplants.2004.12.010.
Article
CAS
PubMed
Google Scholar
Duval M, Hsieh T, Kim S, Thomas T: Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol. 2002, 50: 237-248. 10.1023/A:1016028530943.
Article
CAS
PubMed
Google Scholar
Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 2004, 16: 2481-2498. 10.1105/tpc.104.022699.
Article
CAS
PubMed Central
PubMed
Google Scholar
Xie Q, Frugis G, Colgan D, Chua NH: Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 2000, 14: 3024-3036. 10.1101/gad.852200.
Article
CAS
PubMed Central
PubMed
Google Scholar
Harding HP, Zhang YH, Zeng HQ, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003, 11: 619-633. 10.1016/S1097-2765(03)00105-9.
Article
CAS
PubMed
Google Scholar
Mittler R, Zilinskas BA: Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J. 1994, 5: 397-405. 10.1111/j.1365-313X.1994.00397.x.
Article
CAS
PubMed
Google Scholar
Sgherri CLM, Pinzino C, Navariizzo F: Chemical-changes and O2(-) production in thylakoid membranes under water-stress. Physiol Plant. 1993, 87: 211-216. 10.1111/j.1399-3054.1993.tb00144.x.
Article
CAS
Google Scholar
Leborgne-Castel N, Jelitto-Van Dooren E, Crofts AJ, Denecke J: Overexpression of BiP in tobacco alleviates endoplasmic reticulum stress. Plant Cell. 1999, 11: 459-469. 10.1105/tpc.11.3.459.
Article
CAS
PubMed Central
PubMed
Google Scholar
Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R: The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J. 2005, 43: 745-757. 10.1111/j.1365-313X.2005.02488.x.
Article
CAS
PubMed
Google Scholar
Tenhaken R, Doerks T, Bork P: DCD – a novel plant specific domain in proteins involved in development and programmed cell death. BMC Bioinformatics. 2005, 6: 169-10.1186/1471-2105-6-169.
Article
PubMed Central
PubMed
Google Scholar
Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu CL: Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science. 2000, 290: 2105-2110. 10.1126/science.290.5499.2105.
Article
CAS
PubMed
Google Scholar
Guo Y, Cai Z, Gan S: Transcriptome of Arabidopsis leaf senescence. Plant, Cell Environ. 2004, 27: 521-549. 10.1111/j.1365-3040.2003.01158.x.
Article
CAS
Google Scholar
Andersson A, Keskitalo J, Sjödin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Bhalerao R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P: A transcriptional timetable of autumn senescence. Genome Biol. 2004, 5: R24-10.1186/gb-2004-5-4-r24.
Article
PubMed Central
PubMed
Google Scholar
Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ: Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 2005, 42: 567-585. 10.1111/j.1365-313X.2005.02399.x.
Article
CAS
PubMed
Google Scholar
John I, Hackett R, Cooper W, Drake R, Farrell A, Grierson D: Cloning and characterization of tomato leaf senescence-related cDNAs. Plant Mol Biol. 1997, 33: 641-651. 10.1023/A:1005746831643.
Article
CAS
PubMed
Google Scholar
Lin JF, Wu SH: Molecular events in senescing Arabidopsis leaves. Plant J. 2004, 39: 612-628. 10.1111/j.1365-313X.2004.02160.x.
Article
CAS
PubMed
Google Scholar
Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J: A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science. 2006, 314: 1298-1301. 10.1126/science.1133649.
Article
CAS
PubMed
Google Scholar
Thibaud-Nissen FO, Shealy RT, Khanna A, Vodkin LO: Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol. 2003, 132: 118-136. 10.1104/pp.103.019968.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Hughes JE, Snesrud E, Lee N, Quackenbush J: A concise guide to cDNA microarray analysis. Biotechniques. 2000, 29: 548-+.
CAS
PubMed
Google Scholar
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002, 30: 15-10.1093/nar/30.4.e15.
Article
CAS
Google Scholar
National Center for Biotechnology Information. [http://www.ncbi.nlm.nih.gov]
Arabidopsis Genome Initiative databases. [http://www.arabidopsis.org]
NCBIs Gene Expression Omnibus. GEO, [http://www.ncbi.nlm.nih.gov/geo/]