Kujala UM, Tikkanen HO, Sarna S, Pukkala E, Kaprio J, Koskenvuo M. Disease-specific mortality among elite athletes. JAMA. 2001;285(1):44–5.
Article
CAS
PubMed
Google Scholar
Mengelkoch LJ, Pollock ML, Limacher MC, Graves JE, Shireman RB, Riley WJ, et al. Effects of age, physical training, and physical fitness on coronary heart disease risk factors in older track athletes at twenty-year follow-up. J Am Geriatr Soc. 1997;45(12):1446–53.
CAS
PubMed
Google Scholar
Sarna S, Sahi T, Koskenvuo M, Kaprio J. Increased life expectancy of world class male athletes. Med Sci Sports Exerc. 1993;25(2):237–44.
Article
CAS
PubMed
Google Scholar
Eynon N, Alves AJ, Meckel Y, Yamin C, Ayalon M, Sagiv M, et al. Is the interaction between HIF1A P582S and ACTN3 R577X determinant for power/sprint performance? Metabolism. 2010;59(6):861–5.
Article
CAS
PubMed
Google Scholar
Eynon N, Hanson ED, Lucia A, Houweling PJ, Garton F, North KN, et al. Genes for elite power and sprint performance: ACTN3 leads the way. Sports Med. 2013;43(9):803–17.
Article
PubMed
Google Scholar
Eynon N, Nasibulina ES, Banting LK, Cieszczyk P, Maciejewska-Karlowska A, Sawczuk M, et al. The FTO A/T polymorphism and elite athletic performance: a study involving three groups of European athletes. PLoS One. 2013;8(4):e60570.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, et al. The human obesity gene map: the 2005 update. Obesity. 2006;14:529–644.
Article
PubMed
Google Scholar
Sprouse C, Gordish-Dressman H, Orkunoglu-Suer EF, Lipof JS, Moeckel-Cole S, Patel RR, et al. Response to Comment on Sprouse et al. SLC30A8 nonsynonymous variant is associated with recovery following exercise and skeletal muscle size and strength. Diabetes. 2014;63(5):e9–10.
Article
CAS
PubMed
Google Scholar
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.
Article
CAS
PubMed Central
PubMed
Google Scholar
Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3(7):e115.
Article
PubMed Central
PubMed
Google Scholar
Kilpelainen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 2011;8(11):e1001116.
Article
PubMed Central
PubMed
Google Scholar
Lai A, Chen W, Helm K. Effects of visfatin gene polymorphism RS4730153 on exercise-induced weight loss of obese children and adolescents of Han Chinese. Int J Biol Sci. 2013;9:16–21.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ridderstrale M, Johansson LE, Rastam L, Lindblad U. Increased risk of obesity associated with the variant allele of the PPARGC1A Gly482Ser polymorphism in physically inactive elderly men. Diabetologia. 2006;49(3):496–500.
Article
CAS
PubMed
Google Scholar
Ahmetov II, Williams AG, Popov DV, Lyubaeva EV, Hakimullina AM, Fedotovskaya ON, et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum Genet. 2009;126(6):751–61.
Article
CAS
PubMed
Google Scholar
Eynon N, Meckel Y, Sagiv M, Yamin C, Amir R, Goldhammer E, et al. Do PPARGC1A and PPARalpha polymorphisms influence sprint or endurance phenotypes? Scand J Med Sci Sports. 2010;20(1):e145–50.
Article
CAS
PubMed
Google Scholar
Lucia A, Gomez-Gallego F, Barroso I, Rabadan M, Bandres F, San Juan AF, et al. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J Appl Physiol. 2005;99(1):344–8.
Article
CAS
PubMed
Google Scholar
Maciejewska A, Sawczuk M, Cieszczyk P, Mozhayskaya IA, Ahmetov II. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J Sports Sci. 2012;30(1):101–13.
Article
PubMed
Google Scholar
Groenewoud MJ, Dekker JM, Fritsche A, Reiling E, Nijpels G, Heine RJ, et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia. 2008;51:1659–63.
Article
CAS
PubMed
Google Scholar
Palmer ND, Goodarzi MO, Langefeld CD, Ziegler J, Norris JM, Haffner SM, et al. Quantitative trait analysis of type 2 diabetes susceptibility loci identified from whole genome association studies in the insulin resistance atherosclerosis family study. Diabetes. 2008;57:1093–100.
Article
CAS
PubMed
Google Scholar
Ruchat SM, Elks CE, Loos RJ, Vohl MC, Weisnagel SJ, Rankinen T, et al. Association between insulin secretion, insulin sensitivity and type 2 diabetes susceptibility variants identified in genome-wide association studies. Acta Diabetol. 2008;46(3):217–26.
Article
PubMed
Google Scholar
Li Z, Gilbert JA, Zhang Y, Zhang M, Qiu Q, Ramanujan K, et al. An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis. Dev Cell. 2012;23:1176–88.
Article
CAS
PubMed Central
PubMed
Google Scholar
Morabia A, Cayanis E, Costanza MC, Ross BM, Bernstein MS, Flaherty MS, et al. Association between lipoprotein lipase (LPL) gene and blood lipids: a common variant for a common trait? Genet Epidemiol. 2003;24:309–21.
Article
PubMed
Google Scholar
Murthy V, Julien P, Gagne C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther. 1996;70:101–35.
Article
CAS
PubMed
Google Scholar
Razzaghi H, Aston CE, Hamman RF, Kamboh MI. Genetic screening of the lipoprotein lipase gene for mutations associated with high triglyceride/low HDL-cholesterol levels. Hum Genet. 2000;107:257–67.
Article
CAS
PubMed
Google Scholar
Doi Y, Kubo M, Ninomiya T, Yonemoto K, Iwase M, Arima H, et al. Impact of Kir6.2 E23K polymorphism on the development of type 2 diabetes in a general Japanese population: The Hisayama Study. Diabetes. 2007;56(11):2829–33.
Article
CAS
PubMed
Google Scholar
Huang T, Ren J, Huang J, Li D. Association of homocysteine with type 2 diabetes: a meta-analysis implementing Mendelian randomization approach. BMC Genomics. 2013;14:867.
Article
PubMed Central
PubMed
Google Scholar
Swart KM, Enneman AW, van Wijngaarden JP, van Dijk SC, Brouwer-Brolsma EM, Ham AC, et al. Homocysteine and the methylenetetrahydrofolate reductase 677CT polymorphism in relation to muscle mass and strength, physical performance and postural sway. Eur J Clin Nut. 2013;67(7):743–8.
Article
CAS
Google Scholar
Kruk J. Good scientific practice and ethical principles in scientific research and higher education. Cent Eur J Sport Sci Med. 2013;1:25–9.
Google Scholar
Voisin S, Cieszczyk P, Pushkarev VP, Dyatlov DA, Vashlyayev BF, Shumaylov VA, et al. EPAS1 gene variants are associated with sprint/power athletic performance in two cohorts of European athletes. BMC Genomics. 2014;15:382.
Article
PubMed Central
PubMed
Google Scholar
Sawczuk M, Banting LK, Cieszczyk P, Maciejewska-Karlowska A, Zarebska A, Leonska-Duniec A, et al. MCT1 A1470T: a novel polymorphism for sprint performance? J Sci Med Sport. 2014. doi:10.1016/j.jsams.2013.12.008.
Google Scholar
Rankinen T, Rice T, Teran-Garcia M, Rao DC, Bouchard C. FTO genotype is associated with exercise training-induced changes in body composition. Obesity. 2010;18(2):322–6.
Article
PubMed Central
PubMed
Google Scholar
Andreasen CH, Stender-Petersen KL, Mogensen MS, Torekov SS, Wegner L, Andersen G, et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes. 2008;57(1):95–101.
Article
CAS
PubMed
Google Scholar
Lindi VI, Uusitupa MI, Lindstrom J, Louheranta A, Eriksson JG, Valle TT, et al. Association of the Pro12Ala polymorphism in the PPAR-gamma2 gene with 3-year incidence of type 2 diabetes and body weight change in the Finnish Diabetes Prevention Study. Diabetes. 2002;51(8):2581–6.
Article
CAS
PubMed
Google Scholar
Mori M, Higuchi K, Sakurai A, Tabara Y, Miki T, Nose H. Genetic basis of inter-individual variability in the effects of exercise on the alleviation of lifestyle-related diseases. J Physiol. 2009;587(Pt 23):5577–84.
Article
CAS
PubMed Central
PubMed
Google Scholar
Orkunoglu-Suer FE, Gordish-Dressman H, Clarkson PM, Thompson PD, Angelopoulos TJ, Gordon PM, et al. INSIG2 gene polymorphism is associated with increased subcutaneous fat in women and poor response to resistance training in men. BMC Med Genet. 2008;9:117.
Article
PubMed Central
PubMed
Google Scholar
Ostergard T, Ek J, Hamid Y, Saltin B, Pedersen OB, Hansen T, et al. Influence of the PPAR-gamma2 Pro12Ala and ACE I/D polymorphisms on insulin sensitivity and training effects in healthy offspring of type 2 diabetic subjects. Horm Metab Res. 2005;37(2):99–105.
Article
CAS
PubMed
Google Scholar
Sabin MA, Russo VC, Azar WJ, Yau SW, Kiess W, Werther GA. IGFBP-2 at the interface of growth and metabolism–implications for childhood obesity. Pediatr Endocrinol Rev. 2011;8(4):382–93.
PubMed
Google Scholar
Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, Nakashima E, Ohnaka K, et al. Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes. 2009;58(7):1690–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hinohara K, Nakajima T, Sasaoka T, Sawabe M, Lee BS, Ban J, et al. Replication studies for the association of PSMA6 polymorphism with coronary artery disease in East Asian populations. J Hum Genet. 2009;54(4):248–51.
Article
CAS
PubMed
Google Scholar
Ng MC, Park KS, Oh B, Tam CH, Cho YM, Shin HD, et al. Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes. 2008;57(8):2226–33.
Article
CAS
PubMed Central
PubMed
Google Scholar
Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–6.
Article
CAS
PubMed
Google Scholar
Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–5.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881–5.
Article
CAS
PubMed
Google Scholar
Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39(6):770–5.
Article
CAS
PubMed
Google Scholar
Wu Y, Li H, Loos RJ, Yu Z, Ye X, Chen L, et al. Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes. 2008;57(10):2834–42.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–41.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jia H, Yu L, Jiang Z, Ji Q. Association between IGF2BP2 rs4402960 polymorphism and risk of type 2 diabetes mellitus: a meta-analysis. Arch Med Res. 2011;42(5):361–7.
Article
CAS
PubMed
Google Scholar
Brunzell JD, Deeb SS. Familial lipoprotein lipase deficiency, apo C-II deficiency, and hepatic lipase deficiency. In: The Metabolic & Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001. p. 2789–816.
Google Scholar
Chen Q, Razzaghi H, Demirci FY, Kamboh MI. Functional significance of lipoprotein lipase HindIII polymorphism associated with the risk of coronary artery disease. Atherosclerosis. 2008;200(1):102–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996;37(4):693–707.
CAS
PubMed
Google Scholar
Gerdes C, Gerdes LU, Hansen PS, Faergeman O. Polymorphisms in the lipoprotein lipase gene and their associations with plasma lipid concentrations in 40-year-old Danish men. Circulation. 1995;92(7):1765–9.
Article
CAS
PubMed
Google Scholar
Kuivenhoven JA, Groenemeyer BE, Boer JM, Reymer PW, Berghuis R, Bruin T, et al. Ser447stop mutation in lipoprotein lipase is associated with elevated HDL cholesterol levels in normolipidemic males. Arterioscler Thromb Vasc Biol. 1997;17(3):595–9.
Article
CAS
PubMed
Google Scholar
Mattu RK, Needham EW, Morgan R, Rees A, Hackshaw AK, Stocks J, et al. DNA variants at the LPL gene locus associate with angiographically defined severity of atherosclerosis and serum lipoprotein levels in a Welsh population. Arterioscler Thromb. 1994;14(7):1090–7.
Article
CAS
PubMed
Google Scholar
Vohl MC, Lamarche B, Moorjani S, Prud’homme D, Nadeau A, Bouchard C, et al. The lipoprotein lipase HindIII polymorphism modulates plasma triglyceride levels in visceral obesity. Arterioscler Thromb Vasc Biol. 1995;15(5):714–20.
Article
CAS
PubMed
Google Scholar
Munshi A, Babu MS, Kaul S, Rajeshwar K, Balakrishna N, Jyothy A. Association of LPL gene variant and LDL, HDL, VLDL cholesterol and triglyceride levels with ischemic stroke and its subtypes. J Neurol Sci. 2012;318(1–2):51–4.
Article
CAS
PubMed
Google Scholar
Guo J, Zhang X, Wang L, Guo Y, Xie M. Prevalence of metabolic syndrome and its components among Chinese professional athletes of strength sports with different body weight categories. PLoS One. 2013;8(11):e79758.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kujala UM, Kaprio J, Taimela S, Sarna S. Prevalence of diabetes, hypertension, and ischemic heart disease in former elite athletes. Metabolism. 1994;43(10):1255–60.
Article
CAS
PubMed
Google Scholar