Hallegraeff GM. A review of harmful algal blooms and their apparent global increase. Phycologia. 1993;32:79–99.
Article
Google Scholar
Harper JT, Waanders E, Keeling PJ. On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int J Syst Evol Micr. 2005;55:487–96.
Article
CAS
Google Scholar
Moreno-Diaz-de-la-Espina S, Alverca E, Cuadrado A, Franca S. Organization of the genome and gene expression in a nuclear environment lacking histons and nucleosomes: the amazing dinoflagellates. Eur J Cell Biol. 2005;84:137–49.
Article
PubMed
Google Scholar
Lowe CD, Mello LV, Samatar N, Martin LE, Montagnes DJS. The transcriptome of the novel dinoflagellate Oxyrrhis marina (Alveolata: Dinophyceae): response to salinity examined by 454 sequencing. BMC genomics. 2011;12:519.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jaeckisch N, Yang I, Wohlrab S, Gloeckner G, Kroymann J, Vogel H, et al. Comparative genomic and transcriptomic characterization of the toxigenic marine dinoflagellate Alexandrium ostenfeldii. PLoS ONE. 2011;6:e28012. doi:10.1371/journal.pone.0028012.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jackson CJ, Gornik SG, Waller RF. The mitochondrial genome and transcriptome of the basal dinoflagellate Hematodinium sp.: character evolution within the highly derived mitochondrial genomes of dinoflagellates. Genome Biol Evol. 2012;4:59–72.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol. 2013;23:1399–408.
Article
CAS
PubMed
Google Scholar
Dodge JD. The dinophyceae. The chromosome of the algae. Edited by Godward MBE. London: Arnold; 1966.
Rizzo PJ. Those amazing dinoflagellate chromosomes. Cell Res. 2003;13:215–7.
Article
CAS
PubMed
Google Scholar
Rill RL, Livolant F, Aldrich HC, Davidson MW. Electron microscopy of liquid crystalline DNA: Direct evidence for cholesteric-like organization of DNA in dinoflagellate chromosomes. Chromosoma. 1989;98:280–6.
Article
CAS
PubMed
Google Scholar
Lin S. Genomic understanding of dinoflagellates. Res Microbiol. 2011;166:551–69.
Article
Google Scholar
Hou Y, Lin S. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes. PLoS ONE. 2009;4:e6978. doi:10.1371/journal.pone.0006978.
Article
PubMed Central
PubMed
Google Scholar
Beauchemin M, Roy S, Daoust P, Dagenais-Bellefeuille S, Bertomeu T, Letourneau L, et al. Dinoflagellate tandem array gene transcripts are highly conserved and not polycistronic. PNAS. 2012;109:15793–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tillmann U, Elbrächter M, Krock B, John U, Cembella A. Azadinium spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins. Eur J Phycol. 2009;44:63–79.
Article
CAS
Google Scholar
Krock B, Tillmann U, John U, Cembella AD. Characterization of azaspiracids in plankton size-fractions and isolation of an azaspiracid-producing dinoflagellate from the North Sea. Harmful Algae. 2008; doi:10.1016/j.hal.200806.003.
James KJ, Furey A, Lehane M, Ramstad H, Aune T, Hovgaard P, et al. First evidence of an extensive Northern European distribution of Azaspiracid Poisoning (AZP) toxins in shellfish. Toxicon. 2002;40:909–15.
Article
CAS
PubMed
Google Scholar
Magdalena AB, Lehane M, Krys S, Fernandez ML, Furey A, James KJ. The first identification of azaspiracids in shellfish from France and Spain. Toxicon. 2003;42:105–8.
Article
CAS
PubMed
Google Scholar
Taleb H, Vale P, Amanhir R, Benhadouch A, Sagou R, Chafik A. First detection of azaspiracids in mussels. North West Afr J Shellfish Res. 2006;25:1067–70.
Article
Google Scholar
Twiner MJ, Rehmann N, Hess P, Doucette GJ. Azaspirazid shellfish poisoning: a review on the chemistry, ecology, and toxicology with emphasis on human health impacts. Marine Drugs. 2008;6:39–72.
Article
CAS
PubMed Central
PubMed
Google Scholar
Furey A, O’Doherty S, O’Callaghan K, Lehane M, James KJ. Azaspiracid poisoning (AZP) toxins in shellfish: toxicological and health considerations. Toxicon. 2010;56:173–90.
Article
CAS
PubMed
Google Scholar
Tillmann U, Salas R, Jauffrais T, Hess P, Silke J. Azaspiracids. The producing organism(s): biology and trophic transfer. In: Botana L, editor. Seafood and freswater toxins. Pharmacology, physiology, and detection, seafood and freshwater toxins. Pharmacology, physiology, and detection. Boca Raton: CRC Press Boca Raton; 2014. p. 1197.
Google Scholar
Staunton J, Weissman KJ. Polyketide biosynthesis: a millennium review. Nature Prod Rep. 2001;18:380–416.
Article
CAS
Google Scholar
Gokhale RS, Dipika T. Biochemistry of polyketide synthases. In: Rehm HJ, Reed G, editors. Biotechnology. 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH; 2001. p. 341–72.
Chapter
Google Scholar
Shen B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol. 2003;7:285–95.
Article
CAS
PubMed
Google Scholar
Zhu G, LaGier MJ, Stejskal F, Millership JJ, Cai X, Keithly JS. Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase. Gene. 2002;298:79–89.
Article
CAS
PubMed
Google Scholar
John U, Beszteri B, Derelle E, Van de Peer Y, Read B, Moreau H, et al. Novel insights into evolution of protistan polyketide synthases through phylogenomic analysis. Protist. 2008;159:21–30.
Article
CAS
PubMed
Google Scholar
John U, Beszteri S, Gloeckner G, Singh R, Medlin L, Cembella AD. Genomic characterisation of the ichthyotoxic prymnesiophyte Chrysochromulina polylepis, and the expression of polyketide synthases genes in synchronised cultures. Eur J Phycol. 2010;45:215–29.
Article
CAS
Google Scholar
Freitag M, Beszteri S, Vogel H, John U. Effects of physiological shock treatments on toxicity and polyketide synthase gene expression in Prymnesium parvum (Prymnesiophyceae). Eur J Phycol. 2011;46:193–201. doi:10.1080/09670262.2011.591438.
Article
CAS
Google Scholar
Monroe E, Van Dolah FM. The toxic dinoflagellate Karenia brevis encodes novel type I-like polyketide synthases containing discrete catalytic domains. Protist. 2008;159:471–82.
Article
CAS
PubMed
Google Scholar
Eichholz K, Beszteri B, John U. Putative monofunctional type I polyketide synthase units: a dinoflagellate-specific feature? PLoS ONE. 2012;7:e48624. doi:10.1371/journal.pone.0048624.
Article
CAS
PubMed Central
PubMed
Google Scholar
Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, et al. The tree of eukaryotes. Trends Ecol Evol. 2005;20:670–6.
Article
PubMed
Google Scholar
Toebe K, Joshi A, Messtorff P, Tillmann U, Cembella A, John U. Molecular discrimination of taxa within the dinoflagellate genus Azadinium, the source of azaspiracid toxins. J Plankton Res. 2013;35:225–30.
Article
CAS
Google Scholar
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PloS Biol. 2014;12:e001889.
Article
Google Scholar
Smit AFA, Hubley R, Green P. RepeatMasker Open-3.0. http://www.repeatmasker.org 1996-2010.
Parra G, Bradnam K, Korf I. CEGMA: a pipline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061–7.
Article
CAS
PubMed
Google Scholar
Lommer M, Specht M, Roy AS, Kraemer L, Andreson R, Gutowska MA, et al. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Bio. 2012;13:R66. doi:10.1186/gb-2012-13-7-r66.
Article
Google Scholar
Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004;306:79–86.
Article
CAS
PubMed
Google Scholar
Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. The Phaeodactylum tricornutum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–44.
Article
CAS
PubMed
Google Scholar
Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature. 2013;499:209–13.
Article
CAS
PubMed
Google Scholar
Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 2012;492:59–65.
Article
CAS
PubMed
Google Scholar
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science. 2007;318:245–50.
Article
CAS
PubMed Central
PubMed
Google Scholar
von Wettstein-Knowles P, Olsen JG, McGuire K, Henriksen A. Fatty acid synthesis -role of active site histidines and lysine in Cys-His-His-type beta-ketoacyl-acyl carrier protein synthases. FEBS J. 2006;273:695–710.
Article
Google Scholar
Van Dolah FM, Zippay ML, Pezzolesi L, Rein KS, Johanson JG, Morey JS, et al. Subcellular localization of dinoflagellate polyketide synthases and fatty Acid synthase activity. J Phycol. 2013;49:118–1127.
Google Scholar
McEwan M, Raheel H, Claudio HS, Patrick JK. Nuclear genome sequence survey of the dinoflagellate Heterocapsa triquetra. J Eukaryot Microbiol. 2008;55:530–5.
Article
CAS
PubMed
Google Scholar
Nikitina T, Woodcock CL. Closed chromatin loops at the ends of chromosomes. J Cell Biol. 2004;166:161–5.
Article
CAS
PubMed Central
PubMed
Google Scholar
Butterfield ER, Howe CJ, Ellen R, Nisbet R. An analysis of dinoflagellate metabolism using EST data. Protist. 2013;164:218–36.
Article
CAS
PubMed
Google Scholar
Hackett JD, Anderson DM, Erdner DL, Bhattacharya D. Dinoflagellates: a remarkable evolutionary experiment. Am J Bot. 2004;91:1523–34.
Article
CAS
PubMed
Google Scholar
Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, et al. Spliced leader RNA trans-splicing in dinoflagellates. PNAS. 2007;104:4618–23.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lin S, Zhanga H, Zhuanga Y, Tranb B, Gillb J. Spliced leader–based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates. PNAS. 2010;107:20033–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Roy S, Morse D. A full suite of histones modifying genes are transcribed in the dinoflagellate Lingulodinium. PloS One. 2012;7:e34340. doi:10.1371/journal.pone.0034340.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gornik SG, Ford KL, Mulhern TD, Bacic A, McFadden GI, Waller RF. Loss ofnucleosomal DNA condensation coincides with appearance of a novelnuclear protein in dinoflagellates. Curr Biol. 2012;22:2303–12.
Article
CAS
PubMed
Google Scholar
John U, Groben R, Beszteri B, Medlin L. Utility of amplified fragment length polymorphisms (AFLP) to analyse genetic structure within the Alexandrium tamarense species complex. Protist. 2004;155:169–79.
Article
CAS
PubMed
Google Scholar
Van Dolah FM, Lidie KB, Monroe EA, Bhattacharya D, Campbell L, Doucette GJ, et al. The Florida red tide dinoflagellate Karenia brevis: New insights into cellular and molecular processes underlying bloom dynamics. Harmful Algae. 2007;8:562–72.
Article
Google Scholar
Uribe P, Fuentes D, Valdés J, Shmaryahu A, Zuniga A, Holmes D, et al. Preparation and analysis of an expressed sequence tag library from the toxic dinoflagellate Alexandrium catenella. Mar Biotechnol. 2008;10:692–700.
Article
CAS
PubMed
Google Scholar
Yang I, John U, Beszerti S, Gloeckner G, Krock B, Goesmann A, et al. Comparative gene expression in toxic vs non-toxic strains of the marine dinoflagellate Alexandrium minutum. BMC genomics. 2010;11:248.
Article
PubMed Central
PubMed
Google Scholar
Fukuchi S, Nishikawa K. Estimation of the number of authentic orphan genes in bacterial genomes. DNA Res. 2004;11:219–31.
Article
CAS
PubMed
Google Scholar
Roedelsperger C, Streit A, Sommer RJ. Structure, function and evolution of the nematode genome. In: eLS. Chichester: John Wiley & Sons, Ltd; 2013. doi:10.1002/9780470015902.a0024603.
Google Scholar
Katju V, Lynch M. On the formation of novel genes by duplication in the Caenorhabditis elegans gemone. Mol Biol Evol. 2006;23:1056–67.
Article
CAS
PubMed
Google Scholar
Wisecaver JH, Brosnahan ML, Hackett JD. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates. Genome Biol Evol. 2013;5:2368–81.
Article
PubMed Central
PubMed
Google Scholar
Jeong HJ, Yoo YD, Park JY, Song JY, Kim ST, Lee SH, et al. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat Microb Ecol. 2005;40:133–50.
Article
Google Scholar
Jeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, Kim TH. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J. 2010;45:65–91.
Article
CAS
Google Scholar
Stoecker DK. Mixotrophy among dinoflagellates. J Eukaryot Microbiol. 1999;46:397–401.
Article
Google Scholar
Pawlowiez R, Morey JS, Darius HT, Chinain M, Van Dolah FM. Transcriptome sequencing reveals single domain type I-like polyketide synthases in the toxic dinoflagellate Gambierdiscus polynesiensis. Harmful Algae. 2014;36:29–37.
Article
CAS
Google Scholar
Wohlrab S, Iversen M, John U. A molecular and co-evolutionary context for grazer induced toxin production in Alexandrium tamarense. PLoS ONE. 2010;5:e15039. doi:10.1371/journal.pone.0015039.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids res. 2004;32:1792–7.
Article
CAS
PubMed Central
PubMed
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.
Article
CAS
PubMed
Google Scholar
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25:1307–20.
Article
CAS
PubMed
Google Scholar
Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol. 2006;55:539–52.
Article
PubMed
Google Scholar