Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 2010;87(3):787–99.
Article
PubMed Central
CAS
PubMed
Google Scholar
Howell CR. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 2003;87:4–10.
Article
Google Scholar
Harman GE. Multifunctional fungal symbionts: new tools to enhance plant growth and productivity. New Phytol. 2011;189:647–9.
Article
PubMed
Google Scholar
Lorito M, Woo SL, Harman GE, Monte E. Translational research on Trichoderma: from ‘omics to the field. Annu Rev Phytopathol. 2010;48:395–417.
Article
CAS
PubMed
Google Scholar
Hermosa R, Viterbo A, Chet I, Monte E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology. 2012;158(Pt 1):17–25.
Article
CAS
PubMed
Google Scholar
Contreras-Cornejo H, Ortiz-Castro R, López-Bucio J. Promotion of plant growth and the induction of systemic defence by Trichoderma: physiology, genetics and gene expression. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M, editors. Trichoderma: Biology and Applications. U.K: CABI International; 2013. p. 175–96.
Google Scholar
Yedidia I, Srivastva AK, Kapulnik Y, Chet I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil. 2001;235:235–42.
Article
CAS
Google Scholar
Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M. The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol. 2011;12(4):341–54.
Article
CAS
PubMed
Google Scholar
Viterbo A, Landau U, Kim S, Chernin L, Chet I. Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett. 2010;305(1):42–8.
Article
CAS
PubMed
Google Scholar
Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 2009;149(3):1579–92.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hohmann P, Jones EE, Hill RA, Stewart A. Understanding Trichoderma in the root system of Pinus radiata: associations between rhizosphere colonisation and growth promotion for commercially grown seedlings. Fungal Biol. 2011;115(8):759–67.
Article
PubMed
Google Scholar
Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, et al. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot. 2009;60:3279–95.
Article
PubMed Central
CAS
PubMed
Google Scholar
Donoso EP, Bustamante RO, Caru M, Niemeyer HM. Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. Appl Environ Microbiol. 2008;74(5):1412–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mastouri F, Bjorkman T, Harman GE. Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol Plant Microbe Interact. 2012;25(9):1264–71.
Article
CAS
PubMed
Google Scholar
Moran-Diez ME, Cardoza RE, Gutierrez S, Monte E, Hermosa R. TvDim1 of Trichoderma virens is involved in redox-processes and confers resistance to oxidative stresses. Curr Genet. 2010;56(1):63–73.
Article
CAS
PubMed
Google Scholar
Rawat R, Tewari L. Effect of abiotic stress on phosphate solubilization by biocontrol fungus Trichoderma sp. Curr Microbiol. 2011;62(5):1521–6.
Article
CAS
PubMed
Google Scholar
Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol. 2007;145(3):875–89.
Article
PubMed Central
CAS
PubMed
Google Scholar
Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C. The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol. 2007;8(6):737–46.
Article
CAS
PubMed
Google Scholar
Shoresh M, Harman GE, Mastouri F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol. 2010;48:21–43.
Article
CAS
PubMed
Google Scholar
Salas-Marina MA, Silva-Flores MA, Cervantes-Badillo MG, Rosales-Saavedra MT, Islas-Osuna MA, Casas-Flores S. The Plant Growth-Promoting Fungus Aspergillus ustus Promotes Growth and Induces Resistance Against Different Lifestyle Pathogens in Arabidopsis thaliana. J Microbiol Biotechnol. 2011;21(7):686–96.
Article
PubMed
Google Scholar
Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol. 2003;69(12):7343–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M. Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag Sci. 2012;68(1):60–6.
Article
CAS
PubMed
Google Scholar
Vargas WA, Djonovic S, Sukno SA, Kenerley CM. Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J Biol Chem. 2008;283(28):19804–15.
Article
CAS
PubMed
Google Scholar
Avis PG, Mueller GM, Lussenhop J. Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition. New Phytol. 2008;179(2):472–83.
Article
CAS
PubMed
Google Scholar
Martinez-Medina A, Roldan A, Pascual JA. Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilizer condition in melon crops: growth response and Fusarium wilt biocontrol. App Soil Ecol. 2011;47:98–105.
Article
Google Scholar
de Santiago A, Quintero JM, Aviles M, Delgado A. Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil. 2011;342:97–104.
Article
CAS
Google Scholar
Vargas WA, Mandawe JC, Kenerley CM. Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol. 2009;151(2):792–808.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shoresh M, Harman GE. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol. 2008;147(4):2147–63.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brotman Y, Landau U, Cuadros-Inostroza A, Tohge T, Fernie AR, Chet I, et al. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog. 2013;9(3):e1003221.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hoyos-Carvajal L, Orduz S, Bisset J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biol Contr. 2009;51:409–16.
Article
Google Scholar
Adams P, De-Leij FA, Lynch JM. Trichoderma harzianum Rifai 1295–22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol. 2007;54(2):306–13.
Article
CAS
PubMed
Google Scholar
Babu AG, Shim J, Bang KS, Shea PJ, Oh BT. Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manage. 2014;132:129–34.
Article
CAS
PubMed
Google Scholar
Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species–opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2(1):43–56.
Article
CAS
PubMed
Google Scholar
Yedidia II, Benhamou N, Chet II. Induction of defense responses in cucumber plants (Cucumis sativus L. ) By the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol. 1999;65(3):1061–70.
PubMed Central
CAS
PubMed
Google Scholar
Chacon MR, Rodriguez-Galan O, Benitez T, Sousa S, Rey M, Llobell A, et al. Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. Int Microbiol. 2007;10(1):19–27.
CAS
PubMed
Google Scholar
Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452(7183):88–92.
Article
CAS
PubMed
Google Scholar
Plett JM, Kemppainen M, Kale SD, Kohler A, Legue V, Brun A, et al. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol. 2011;21(14):1197–203.
Article
CAS
PubMed
Google Scholar
Plett JM, Martin F. Poplar root exudates contain compounds that induce the expression of MiSSP7 in Laccaria bicolor. Plant Signal Behav. 2012;7(1):12–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Plett JM, Daguerre Y, Wittulsky S, Vayssieres A, Deveau A, Melton SJ, et al. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(22):8299–304.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kloppholz S, Kuhn H, Requena N. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol. 2011;21(14):1204–9.
Article
CAS
PubMed
Google Scholar
Lahrmann U, Ding Y, Banhara A, Rath M, Hajirezaei MR, Dohlemann S, et al. Host-related metabolic cues affect colonization strategies of a root endophyte. Proc Natl Acad Sci U S A. 2013;110(34):13965–70.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol. 2008;26(5):553–60.
Article
CAS
PubMed
Google Scholar
Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011;12(4):R40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Druzhinina I, Seidl-Seiboth V, Herrera-Estrella A, Horwitz B, Kenerley C, Monte E, et al. Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol. 2011;9:749–59.
Article
CAS
PubMed
Google Scholar
Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM. Trichoderma research in the genome era. Annu Rev Phytopathol. 2013;51:105–29.
Article
CAS
PubMed
Google Scholar
Samolski I, de Luis A, Vizcaino JA, Monte E, Suarez MB. Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray. BMC Microbiol. 2009;9:217.
Article
PubMed Central
PubMed
Google Scholar
Rubio MB, Dominguez S, Monte E, Hermosa R. Comparative study of Trichoderma gene expression in interactions with tomato plants using high-density oligonucleotide microarrays. Microbiology. 2012;158(Pt 1):119–28.
Article
CAS
PubMed
Google Scholar
Mehrabi-Koushki M, Rouhani H, Mahdikhani-Moghaddam E. Differential Display of Abundantly Expressed Genes of Trichoderma harzianum During Colonization of Tomato-Germinating Seeds and Roots. Curr Microbiol. 2012;65(5):524–33.
Article
CAS
PubMed
Google Scholar
Trushina N, Levin M, Mukherjee PK, Horwitz BA. PacC and pH-dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics. 2013;14:138.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hatfield GW, Hung SP, Baldi P. Differential analysis of DNA microarray gene expression data. Mol Microbiol. 2003;47(4):871–7.
Article
CAS
PubMed
Google Scholar
Kayala MA, Baldi P. Cyber-T web server: differential analysis of high-throughput data. Nucleic Acids Res. 2012;40(Web Server issue):W553–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics. 2002;18(1):207–8.
Article
CAS
PubMed
Google Scholar
Maor R, Puyesky M, Horwitz BA, Sharon A. Use of green fluorescent protein (GFP) for studying development and fungal-plant interaction in Cochliobolus heterostrophus. Mycol Res. 1998;102(4):491–6.
Article
Google Scholar
Lu S, Lyngholm L, Yang G, Bronson C, Yoder OC, Turgeon BG. Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration. Proc Natl Acad Sci U S A. 1994;91(26):12649–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Turgeon B, Condon B, Liu J, Zhang N. Protoplast transformation of filamentous fungi. In: Sharon A, editor. Molecular and Cell Biology Methods for Fungi, vol. 638. New York: Springer/Humana; 2010. p. 3–19.
Chapter
Google Scholar
Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, et al. Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature. 2010;464(7291):1033–8.
Article
CAS
PubMed
Google Scholar
Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res. 2009;344(14):1879–900.
Article
CAS
PubMed
Google Scholar
O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet. 2012;44(9):1060–5.
Article
PubMed
Google Scholar
Moran-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutierrez S, Lorito M, et al. The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Mol Plant Microbe Interact. 2009;22(8):1021–31.
Article
CAS
PubMed
Google Scholar
Horwitz BA, Kosti I, Glaser F, Mukherjee M. Trichoderma genomes: a vast reservoir of potential elicitor proteins. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M, editors. Trichoderma: Biology and Applications. UK: CABI International; 2013. p. 195–208.
Chapter
Google Scholar
Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact. 2006;19(8):838–53.
Article
CAS
PubMed
Google Scholar
Samolski I, Rincon AM, Pinzon LM, Viterbo A, Monte E. The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology. 2012;158(Pt 1):129–38.
Article
CAS
PubMed
Google Scholar
Alonso-Ramírez A, Poveda J, Martin I, Hermosa R, Monte R, Nicolás C. Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Mol Plant Pathol. 2014;15:823–31.
Article
PubMed
Google Scholar
Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A. 2013;110(50):20117–22.
Article
PubMed Central
CAS
PubMed
Google Scholar