Sakuma S, Salomon B, Komatsuda T. The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. Plant Cell Physiol. 2011;52:738–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zohary D, Hopf M, Weiss E. Domestication of Plants in the Old World: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. 4th ed. Oxford: Oxford University Press; 2012.
Book
Google Scholar
Morrell PL, Clegg MT. Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Natl Acad Sci U S A. 2007;104:3289–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L, et al. Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci U S A. 2012;109:16969–73.
Article
PubMed
PubMed Central
Google Scholar
Tanksley SD, McCouch SR. Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild. Science. 1997;277:1063–6.
Article
PubMed
CAS
Google Scholar
Zamir D. Improving plant breeding with exotic genetic libraries. Nat Rev Genet. 2001;2:983–9.
Article
PubMed
CAS
Google Scholar
Ellis RP, Forster BP, Robinson D, Handley LL, Gordon DC, Russell JR, et al. Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot. 2000;51:9–17.
Article
PubMed
CAS
Google Scholar
Pillen K, Zacharias A, Leon J. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet. 2003;107:340–52.
Article
PubMed
CAS
Google Scholar
Wang G, Schmalenbach I, von Korff M, Leon J, Kilian B, Rode J, et al. Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC(2)DH population and a set of wild barley introgression lines. Theor Appl Genet. 2010;120:1559–74.
Article
PubMed
PubMed Central
Google Scholar
Schmalenbach I, March TJ, Bringezu T, Waugh R, Pillen K. High-Resolution Genotyping of Wild Barley Introgression Lines and Fine-Mapping of the Threshability Locus thresh-1 Using the Illumina GoldenGate Assay. G3 (Bethesda). 2011;1:187–96.
Article
CAS
Google Scholar
Ma X, Li C, Wang A, Duan R, Jiao G, Nevo E, et al. Genetic diversity of wild barley (Hordeum vulgare ssp. spontaneum) and its utilization for barley improvement. Sci Cold Arid Reg. 2012;4:453–61.
Article
Google Scholar
McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E, et al. Agriculture: Feeding the future. Nature. 2013;499:23–4.
Article
PubMed
CAS
Google Scholar
Schnaithmann F, Kopahnke D, Pillen K. A first step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance. Theor Appl Genet. 2014;127:1513–25.
Article
PubMed
Google Scholar
Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, et al. Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot. 2007;58:1231–44.
Article
PubMed
CAS
Google Scholar
Turner A, Beales J, Faure S, Dunford RP, Laurie DA. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science. 2005;310:1031–4.
Article
PubMed
CAS
Google Scholar
Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci U S A. 2006;103:19581–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science. 2004;303:1640–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A. 2003;100:6263–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
von Zitzewitz J, Szűcs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, et al. Molecular and structural characterization of barley vernalization genes. Plant Mol Biol. 2005;59:449–67.
Article
CAS
Google Scholar
Laurie D, Pratchett N, Snape J, Bezant J. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome. 1995;38:575–85.
Article
PubMed
CAS
Google Scholar
Distelfeld A, Li C, Dubcovsky J. Regulation of flowering in temperate cereals. Curr Opin Plant Biol. 2009;12:178–84.
Article
PubMed
CAS
Google Scholar
Jung C, Mueller AE. Flowering time control and applications in plant breeding. Trends Plant Sci. 2009;14:563–73.
Article
PubMed
CAS
Google Scholar
Milec Z, Valárik M, Bartoš J, Šafář J. Can a late bloomer become an early bird? Tools for flowering time adjustment. Biotechnol Adv. 2014;32:200–14.
Article
PubMed
Google Scholar
Cockram J, Hones H, O’Sullivan DM. Genetic variation at flowering time loci in wild and cultivated barley. Plant Genet Resour. 2011;9:264–7.
Article
CAS
Google Scholar
Nevo E, Fu Y-B, Pavlicek T, Khalifa S, Tavasi M, Beiles A. Evolution of wild cereals during 28 years of global warming in Israel. Proc Natl Acad Sci U S A. 2012;109:3412–5.
Article
PubMed
PubMed Central
Google Scholar
Yu J, Holland JB, McMullen MD, Buckler ES. Genetic design and statistical power of nested association mapping in maize. Genetics. 2008;178:539–51.
Article
PubMed
PubMed Central
Google Scholar
Jordan D, Mace E, Cruickshank A, Hunt C, Henzell R. Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci. 2011;51:1444–57.
Article
Google Scholar
Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, et al. The Genetic Architecture of Maize Flowering Time. Science. 2009;325:714–8.
Article
PubMed
CAS
Google Scholar
Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet. 2011;43:163–8.
Article
PubMed
CAS
Google Scholar
Poland JA, Bradbury PJ, Buckler ES, Nelson RJ. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A. 2011;108:6893–8.
Article
PubMed
PubMed Central
Google Scholar
Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet. 2011;43:159–62.
Article
PubMed
CAS
Google Scholar
Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, et al. Genetic Architecture of Maize Kernel Composition in the Nested Association Mapping and Inbred Association Panels. Plant Physiol. 2012;158:824–34.
Article
PubMed
CAS
Google Scholar
Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, et al. The genetic architecture of maize height. Genetics. 2014;196:1337–56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wallace J, Larsson S, Buckler E. Entering the second century of maize quantitative genetics. Heredity (Edinb). 2014;112:30–8.
Article
CAS
Google Scholar
Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, et al. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet. 2012;44:1388–92.
Article
PubMed
CAS
Google Scholar
Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N. TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes. 2009;2:258.
Article
PubMed
PubMed Central
CAS
Google Scholar
Badr A, Muller K, Schafer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, et al. On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol. 2000;17:499–510.
Article
PubMed
CAS
Google Scholar
Liu W, Gowda M, Steinhoff J, Maurer HP, Würschum T, Longin CFH, et al. Association mapping in an elite maize breeding population. Theor Appl Genet. 2011;123:847–58.
Article
PubMed
Google Scholar
Würschum T, Liu W, Gowda M, Maurer H, Fischer S, Schechert A, et al. Comparison of biometrical models for joint linkage association mapping. Heredity (Edinb). 2012;108:332–40.
Article
Google Scholar
Utz HF, Melchinger AE, Schön CC. Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics. 2000;154:1839–49.
PubMed
PubMed Central
CAS
Google Scholar
Gowda M, Zhao Y, Würschum T, Longin CF, Miedaner T, Ebmeyer E, et al. Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat. Heredity (Edinb). 2014;112:552–61.
Article
CAS
Google Scholar
Mace E, Hunt C, Jordan D. Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Theor Appl Genet. 2013;126:1377–95.
Article
PubMed
CAS
Google Scholar
Loscos J, Igartua E, Contreras-Moreira B, Gracia MP, Casas AM. HvFT1 polymorphism and effect – survey of barley germplasm and expression analysis. Front Plant Sci. 2014;5:251.
Article
PubMed
PubMed Central
Google Scholar
Mutasa-Göttgens E, Hedden P. Gibberellin as a factor in floral regulatory networks. J Exp Bot. 2009;60:1979–89.
Article
PubMed
CAS
Google Scholar
Jia Q, Zhang J, Westcott S, Zhang X-Q, Bellgard M, Lance R, et al. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics. 2009;9:255–62.
Article
PubMed
CAS
Google Scholar
Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, et al. Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci U S A. 2012;109:8328–33.
Article
PubMed
PubMed Central
Google Scholar
Zakhrabekova S, Gough SP, Braumann I, Muller AH, Lundqvist J, Ahmann K, et al. Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc Natl Acad Sci U S A. 2012;109:4326–31.
Article
PubMed
PubMed Central
Google Scholar
Boden SA, Weiss D, Ross JJ, Davies NW, Trevaskis B, Chandler PM, et al. EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression. Plant Cell. 2014;26:1557–69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dunford RP, Griffiths S, Christodoulou V, Laurie DA. Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet. 2005;110:925–31.
Article
PubMed
CAS
Google Scholar
Meuwissen THE, Hayes BJ, Goddard ME. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics. 2001;157:1819–29.
PubMed
PubMed Central
CAS
Google Scholar
Whittaker JC, Thompson R, Denham MC. Marker-assisted selection using ridge regression. Genet Res. 2000;75:249–52.
Article
PubMed
CAS
Google Scholar
Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the Bayesian alphabet for genomic selection. BMC Bioinf. 2011;12:186.
Article
Google Scholar
Lorenzana RE, Bernardo R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet. 2009;120:151–61.
Article
PubMed
Google Scholar
Guo ZG, Tucker DM, Lu JW, Kishore V, Gay G. Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor Appl Genet. 2012;124:261–75.
Article
PubMed
Google Scholar
Guo Z, Tucker DM, Basten CJ, Gandhi H, Ersoz E, Guo B, et al. The impact of population structure on genomic prediction in stratified populations. Theor Appl Genet. 2014;127:749–62.
Article
PubMed
Google Scholar
Zhao Y, Mette MF, Gowda M, Longin CFH, Reif JC. Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity (Edinb). 2014;112:638–45.
Article
CAS
Google Scholar
Habier D, Fernando R, Dekkers J. The impact of genetic relationship information on genome-assisted breeding values. Genetics. 2007;177:2389–97.
PubMed
PubMed Central
CAS
Google Scholar
Mackay TF. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet. 2013;15:22–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
von Korff M, Léon J, Pillen K. Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet. 2010;121:1455–64.
Article
Google Scholar
Griffiths S, Dunford RP, Coupland G, Laurie DA. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol. 2003;131:1855–67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tranquilli G, Dubcovsky J. Epistatic interaction between vernalization genes Vrn-Am1 and Vrn-Am2 in diploid wheat. J Hered. 2000;91:304–6.
Article
PubMed
CAS
Google Scholar
Szűcs P, Skinner JS, Karsai I, Cuesta-Marcos A, Haggard KG, Corey AE, et al. Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Mol Genet Genomics. 2007;277:249–61.
Article
PubMed
CAS
Google Scholar
Chen A, Dubcovsky J. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet. 2012;8:e1003134.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rutkoski JE, Poland J, Jannink J-L, Sorrells ME. Imputation of Unordered Markers and the Impact on Genomic Selection Accuracy. G3 (Bethesda). 2013;3:427–39.
Article
Google Scholar
R Development Core Team (2010) R: A language and environment for statistical computing, R Foundation for Statistical Computing. http://www.R-project.org
Xia X, Reif J, Melchinger A, Frisch M, Hoisington D, Beck D, et al. Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers. Crop Sci. 2005;45:2573–82.
Article
CAS
Google Scholar
Weir BS. Genetic Data Analysis II. Sunderland, MA: Sinauer Associates, Inc.; 1996.
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.
Article
PubMed
CAS
Google Scholar
Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc. 1979;74:829–36.
Article
Google Scholar
Breseghello F, Sorrells ME. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics. 2006;172:1165–77.
Article
PubMed
PubMed Central
Google Scholar
Jakob SS, Rödder D, Engler JO, Shaaf S, Özkan H, Blattner FR, et al. Evolutionary History of Wild Barley (Hordeum vulgare subsp. spontaneum) Analyzed Using Multilocus Sequence Data and Paleodistribution Modeling. Genome Biol Evol. 2014;6:685–702.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lancashire PD, Bleiholder H, Boom TVD, Langelüddeke P, Stauss R, Weber E, et al. A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol. 1991;119:561–601.
Article
Google Scholar
Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6:461–4.
Article
Google Scholar
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.
Google Scholar
Kramer CY. Extension of multiple range tests to group means with unequal numbers of replications. Biometrics. 1956;12:307–10.
Article
Google Scholar
Henderson CR. Applications of Linear Models in Animal Breeding. Guelph: University of Guelph; 1984.
Google Scholar
Hjorth JU. Computer intensive statistical methods: Validation, model selection, and bootstrap. London: Chapman & Hall/CRC; 1993.
Google Scholar