Walls G. The Vertebrate Eye and Its Adaptive Radiation. New York: Hafner publishing company; 1942.
Book
Google Scholar
Hart NS. The visual ecology of avian photoreceptors. Prog Retin Eye Res. 2001;20:675–703.
Article
CAS
PubMed
Google Scholar
Jacobs GH. Evolution of colour vision in mammals. Philos Trans R Soc Lond B Biol Sci. 2009;364:2957–67.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vorobyev M. Coloured oil droplets enhance colour discrimination. Proc Biol Sci. 2003;270:1255–61.
Article
PubMed Central
PubMed
Google Scholar
Yokoyama S, Radlwimmer FB, Blow NS. Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc Natl Acad Sci. 2000;97:7366–71.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bennett ATD, Cuthill IC, Partridge JC, Maier EJ. Ultraviolet vision and mate choice in zebra finches. Nature. 1996;380:433–5.
Article
CAS
Google Scholar
Viitala J, Korplmäki E, Palokangas P, Koivula M. Attraction of kestrels to vole scent marks visible in ultraviolet light. Nature. 1995;373:425–7.
Article
CAS
Google Scholar
Burkhardt D. UV vision: a bird’s eye view of feathers. J Comp Physiol A. 1989;164:787–96.
Article
Google Scholar
Wiltschko W, Munro U, Ford H, Wiltschko R. Red light disrupts magnetic orientation of migratory birds. Nature. 1993;364:525–7.
Article
Google Scholar
Dominoni D, Quetting M, Partecke J. Artificial light at night advances avian reproductive physiology. Proc Biol Sci. 2013;280:20123017.
Article
PubMed Central
PubMed
Google Scholar
Terakita A. The opsins. Genome Biol. 2005;1:1–9.
Google Scholar
Peirson S, Halford S, Foster R. The evolution of irradiance detection: melanopsin and the non-visual opsins. Philos Trans R Soc Lond B Biol Sci. 2009;364:2849–65.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shichida Y, Matsuyama T. Evolution of opsins and phototransduction. Philos Trans R Soc Lond B Biol Sci. 2009;364:2881–95.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science. 2014;346:1311–20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ödeen A, Håstad O. Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol. 2003;20:855–61.
Article
PubMed
Google Scholar
Ödeen A, Håstad O. The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol Biol. 2013;13:36.
Article
PubMed Central
PubMed
Google Scholar
Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–31.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wright MW, Bowmaker JK. Retinal photoreceptors of paleognathous birds: the ostrich (Struthio camelus) and rhea (Rhea americana). Vision Res. 2001;41:1–12.
Article
CAS
PubMed
Google Scholar
Ödeen A, Håstad O. Pollinating birds differ in spectral sensitivity. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol. 2010;196:91–6.
Article
Google Scholar
Xia X. DAMBE5: A Comprehensive Software Package for Data Analysis in Molecular Biology and Evolution. Mol Biol Evol. 2013;30:1720–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen Y-C, Liu T, Yu C-H, Chiang T-Y, Hwang C-C. Effects of GC Bias in Next-Generation-Sequencing Data on De Novo Genome Assembly. PLoS One. 2013;8:e62856.
Article
PubMed Central
CAS
PubMed
Google Scholar
Anisimova M, Bielawski JP, Yang Z. Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol. 2001;18:1585–92.
Article
CAS
PubMed
Google Scholar
Ödeen A, Hart NS, Håstad O. Assessing the use of genomic DNA as a predictor of the maximum absorbance wavelength of avian SWS1 opsin visual pigments. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol. 2009;195:167–73.
Article
Google Scholar
Ödeen A, Håstad O. New primers for the avian SWS1 pigment opsin gene reveal new amino acid configurations in spectral sensitivity tuning sites. J Hered. 2009;100:784–9.
Article
PubMed
Google Scholar
Li C, Zhang Y, Li J, Kong L, Hu H, Pan H, et al. Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. Gigascience. 2014;3:27.
Article
PubMed Central
PubMed
Google Scholar
Yokoyama S, Tada T, Zhang H, Britt L. Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci. 2008;105:13480–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sturm RA. Molecular genetics of human pigmentation diversity. Hum Mol Genet. 2009;18:R9–R17.
Article
CAS
PubMed
Google Scholar
Mundy NI. Coloration and the Genetics of Adaptation. PLoS Biol. 2007;5:e250.
Article
PubMed Central
PubMed
Google Scholar
Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP. A Single Amino Acid Mutation Contributes to Adaptive Beach Mouse Color Pattern. Science. 2006;313:101–4.
Article
CAS
PubMed
Google Scholar
Dodt E, Meissl H. The pineal and parietal organs of lower vertebrates. Experientia. 1982;38:996–1000.
Article
CAS
PubMed
Google Scholar
Natesan A, Geetha L, Zatz M. Rhythm and soul in the avian pineal. Cell Tissue Res. 2002;309:35–45.
Article
CAS
PubMed
Google Scholar
Arendt J. Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology. Rev Reprod. 1998;3:13–22.
Article
CAS
PubMed
Google Scholar
Grigg GC, Beard LA, Augee ML. The evolution of endothermy and its diversity in mammals and birds. Physiol Biochem Zool. 2004;77:982–97.
Article
PubMed
Google Scholar
Okano T, Kojima D, Fukada Y, Shichida Y, Yoshizawa T. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci. 1992;89:5932–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu J, Liu MY, Nguyen JB, Bhagat A, Mooney V, Yan ECY. Thermal properties of rhodopsin: insight into the molecular mechanism of dim-lingth vision. J Biol Chem. 2011;286:27622–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gerkema MP, Davies WIL, Foster RG, Menaker M, Hut RA. The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc Biol Sci. 2013;280:20130508.
Article
PubMed Central
PubMed
Google Scholar
Sivasundar A, Palumbi SR. Parallel amino acid replacements in the rhodopsins of the rockfishes (Sebastes spp.) associated with shifts in habitat depth. J Evol Biol. 2010;23:1159–69.
Article
CAS
PubMed
Google Scholar
Khan I, Yang Z, Maldonado E, Li C, Zhang G, Gilbert MTP, et al. Olfactory Receptor Subgenomes Linked with Broad Ecological Adaptations in Sauropsida. Mol Biol Evol 2015:msv155. [Epub ahead of print]
Yokoyama S, Shi Y. Genetics and evolution of ultraviolet vision in vertebrates. FEBS Lett. 2000;486:167–72.
Article
CAS
PubMed
Google Scholar
Zawilska JB, Rosiak J, Nowak JZ. Effects of Near-Ultraviolet (UV-A) Light on Melatonin Biosynthesis in Vertebrate Pineal Gland. Neurosignals. 1999;8:64–9.
Article
CAS
Google Scholar
Aidala Z, Huynen L, Brennan PLR, Musser J, Fidler A, Chong N, et al. Ultraviolet visual sensitivity in three avian lineages: paleognaths, parrots, and passerines. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012;198:495–510.
Article
PubMed
Google Scholar
Ödeen A, Håstad O, Alström P. Evolution of ultraviolet vision in the largest avian radiation - the passerines. BMC Evol Biol. 2011;11:313.
Article
PubMed Central
PubMed
Google Scholar
Mundy NI. A window on the genetics of evolution: MC1R and plumage colouration in birds. Proc Biol Sci. 2005;272:1633–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Robbins L. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell. 1993;72:827–34.
Article
CAS
PubMed
Google Scholar
Takeuchi S, Suzuki H, Hirose S, Yabuuchi M, Sato C, Yamamoto H, et al. Molecular cloning and sequence analysis of the chick melanocortin 1-receptor gene. Biochim Biophys Acta - Gene Struct Expr. 1996;1306:122–6.
Article
Google Scholar
Theron E, Hawkins K, Bermingham E, Ricklefs RE, Mundy NI. The molecular basis of an avian plumage polymorphism in the wild: A melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, Coereba flaveola. Curr Biol. 2001;11:550–7.
Article
CAS
PubMed
Google Scholar
Uy JAC, Moyle RG, Filardi CE, Cheviron ZA. Difference in plumage color used in species recognition between incipient species is linked to a single amino acid substitution in the melanocortin-1 receptor. Am Nat. 2009;174:244–54.
Article
PubMed
Google Scholar
Doucet SM, Shawkey MD, Rathburn MK, Mays HL, Montgomerie R. Concordant evolution of plumage colour, feather microstructure and a melanocortin receptor gene between mainland and island populations of a fairy-wren. Proc Biol Sci. 2004;271:1663–70.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nadeau NJ, Minvielle F, Mundy NI. Association of a Glu92Lys substitution in MC1R with extended brown in Japanese quail (Coturnix japonica). Anim Genet. 2006;37:287–9.
Article
CAS
PubMed
Google Scholar
Nadeau NJ, Burke T, Mundy NI. Evolution of an avian pigmentation gene correlates with a measure of sexual selection. Proc Biol Sci. 2007;274:1807–13.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vorobyev M, Osorio D, Bennetta TD, Marshall NJ, Cuthill IC. Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol. 1998;183:621–33.
Article
CAS
Google Scholar
Bloch NI, Price TD, Chang BSW. Evolutionary dynamics of Rh2 opsins in birds demonstrate an episode of accelerated evolution in the New World warblers (Setophaga). Mol Ecol. 2015;24:2449–62.
Article
CAS
PubMed
Google Scholar
Van der Willigen RF, Frost B, Wagner H. Stereoscopic depth perception in the owl. Neuroreport. 1998;9:1233–7.
Article
PubMed
Google Scholar
Fite KV, Rosenfield-Wessels S. A comparative study of deep avian foveas. Brain Behav Evol. 1975;12:97–115.
Article
CAS
PubMed
Google Scholar
Bowmaker JK. Evolution of vertebrate visual pigments. Vision Res. 2008;48:2022–41.
Article
CAS
PubMed
Google Scholar
Bowmaker JK, Martin GR. Visual pigments and colour vision in a nocturnal bird, Strix aluco (tawny owl). Vision Res. 1978;18:1125–30.
Article
CAS
PubMed
Google Scholar
Okano T, Fukada Y. Photoreception and circadian clock system of the chicken pineal gland. Microsc Res Tech. 2001;53:72–80.
Article
CAS
PubMed
Google Scholar
Okano T, Yoshizawa T, Fukada Y. Pinopsin is a chicken pineal photoreceptive molecule. Nature. 1994;372:94–7.
Article
CAS
PubMed
Google Scholar
Haldar C, Guchhait P. Pineal gland of a nocturnal bird, Indian spotted owlet, Athene brama: Morphological and endocrine observations. J Exp Zool. 2000;287:145–50.
Article
CAS
PubMed
Google Scholar
Zhao H, Rossiter SJ, Teeling EC, Li C, Cotton JA, Zhang S. The evolution of color vision in nocturnal mammals. Proc Natl Acad Sci. 2009;106:8980–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peichl L. Diversity of mammalian photoreceptor properties: Adaptations to habitat and lifestyle? Anat Rec Part A Discov Mol Cell Evol Biol. 2005;287A:1001–12.
Article
CAS
Google Scholar
Sivak J, Howland HC, McGill-Harelstad P. Vision of the Humboldt Penguin (Spheniscus humboldti) in Air and Water. Proc R Soc B Biol Sci. 1987;229:467–72.
Article
CAS
Google Scholar
Bowmaker JK, Martin GR. Visual pigments and oil droplets in the penguin, Spheniscus humboldti. J Comp Physiol A. 1985;156:71–7.
Article
CAS
Google Scholar
Hunt DM, Carvalho LS, Cowing JA, Davies WL. Evolution and spectral tuning of visual pigments in birds and mammals. Philos Trans R Soc Lond B Biol Sci. 2009;364:2941–55.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heath LA, Wilkie SE, Bowmaker JK, Hunt DM. The rod and green cone opsins of two avian species, the budgerigar, Melopsittacus undulatus, and the mallard duck, Anas platyrhynchus. Gene. 1997;204:121–6.
Article
CAS
PubMed
Google Scholar
Panda S. Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice. Science. 2003;301:525–7.
Article
CAS
PubMed
Google Scholar
Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Tarttelin EE, et al. Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol. 2006;4:e254.
Article
PubMed Central
PubMed
Google Scholar
Borges R, Johnson WE, O’Brien SJ, Vasconcelos V, Antunes A. The role of gene duplication and unconstrained selective pressures in the melanopsin gene family evolution and vertebrate circadian rhythm regulation. PLoS One. 2012;7:e52413.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamashita T, Ohuchi H, Tomonari S, Ikeda K, Sakai K, Shichida Y. Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci. 2010;107:22084–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fasick JI, Robinson PR. Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth. Vis Neurosci. 2000;17:S095252380017511X.
Article
Google Scholar
Zhao H, Ru B, Teeling E, Faulkes C, Zhang S, Rossiter S. Rhodopsin Molecular Evolution in Mammals Inhabiting Low Light Environments. PLoS One. 2009;4:e8326.
Article
PubMed Central
PubMed
Google Scholar
Piezzi R, Gutiérrez L. Electron microscopic studies on the pineal organ of the antarctic penguin, (Pygoscelis papua). Cell Tissue Res. 1975;164.
Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl 2014. Nucleic Acids Res. 2014;42(Database issue):D749–55.
Article
PubMed Central
CAS
PubMed
Google Scholar
McEntyre J, Ostell J, Pruitt K, Brown G: The Reference Sequence (RefSeq) Database. 2nd Ed 2012:http://www.ncbi.nlm.nih.gov/books/NBK143764/.
Zhang G, Li B, Li C, Gilbert M, Jarvis ED, Wang J. Comparative genomic data of the Avian Phylogenomics Project. Gigascience. 2014;3:26.
Article
PubMed Central
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Matrix. 2004;32:1792–7.
CAS
Google Scholar
Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:1253–6.
Article
CAS
PubMed
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Article
CAS
PubMed
Google Scholar
Yang Z, Wong WSW, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol. 2005;22:1107–18.
Article
CAS
PubMed
Google Scholar
Yang Z, Nielsen R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002;19:908–17.
Article
CAS
PubMed
Google Scholar
R Development Core Team R: R: A Language and Environment for Statistical Computing. R Found Stat Comput 2011:409. [R Foundation for Statistical Computing]
Hubert M, Rousseeuw PJ, Vanden Branden K. ROBPCA: A New Approach to Robust Principal Component Analysis. Technometrics. 2005;47:64–79.
Article
Google Scholar