Simons M, Minson SE, Sladen A, Ortega F, Jiang J, Owen SE, et al.The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science. 2011; 332(6036):1421–5.
Article
PubMed
CAS
Google Scholar
McLeod MK, Slavich P, Irhas Y, Moore N, Rachman A, Ali N, et al.Soil salinity in Aceh after the December 2004 Indian Ocean tsunami. Agric Water Manag. 2010; 97(5):605–13.
Article
Google Scholar
Rengalakshmi R, Senthilkumar R, Selvarasu T, Thamizoli P. Reclamation and status of tsunami damaged soil in Nagappattinam District, Tamil Nadu. Curr Sci. 2007; 92(9):1221–3.
CAS
Google Scholar
Ranjan RK, Ramanathan AL, Singh G. Evaluation of geochemical impact of tsunami on Pichavaram mangrove ecosystem, southeast coast of India. Environ Geol. 2008; 55(3):687–97.
Article
CAS
Google Scholar
Szczuciński W, Niedzielski P, Rachlewicz G, Sobczyński T, Zioła A, Kowalski A, et al.Contamination of tsunami sediments in a coastal zone inundated by the 26 December 2004 tsunami in Thailand. Environ Geol. 2005; 49(2):321–31.
Article
Google Scholar
Srinivasalu S, Thangadurai N, Jonathan MP, Armstrong-Altrin J, Ayyamperumal T, Ram-Mohan V. Evaluation of trace-metal enrichments from the 26 December 2004 tsunami sediments along the Southeast coast of India. Environ Geol. 2008; 53(8):1711–21.
Article
CAS
Google Scholar
Prasath P, Khan TH. Impact of Tsunami on the heavy metal accumulation in water, Sediments and fish at Poompuhar coast, Southeast Coast of India. J Chem. 2008; 5(1):16–22.
Google Scholar
Chandrasekharan H, Sarangi A, Nagarajan M, Singh V, Rao D, Stalin P, et al.Variability of soil–water quality due to Tsunami-2004 in the coastal belt of Nagapattinam district, Tamilnadu. J Environ Manag. 2008; 89(1):63–72.
Article
CAS
Google Scholar
Szczucinski W, Chaimanee N, Niedzielski P, Rachlewicz G, Saisuttichai D, Tepsuwan T, et al.Environmental and geological impacts of the 26 December 2004 tsunami in coastal zone of Thailand-overview of short and long-term effects. Pol J Environ Stud. 2006; 15(5):793–810.
Google Scholar
Curran PJ, Dash J, Llewellyn GM. Indian Ocean tsunami: The use of MERIS (MTCI) data to infer salt stress in coastal vegetation. Int J Remote Sensing. 2007; 28(3–4):729–35.
Article
Google Scholar
Hayasaka D, Shimada N, Konno H, Sudayama H, Kawanishi M, Uchida T, et al.Floristic variation of beach vegetation caused by the 2011 Tohoku-oki tsunami in northern Tohoku, Japan. Ecol Eng. 2012; 44:227–32.
Article
Google Scholar
Somboonna N, Wilantho A, Jankaew K, Assawamakin A, Sangsrakru D, Tangphatsornruang S, et al.Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials. PLoS ONE. 2014; 9(4):e94236.
Article
PubMed
PubMed Central
Google Scholar
Wada K, Fukuda K, Yoshikawa T, Hirose T, Ikeno T, Umata T, et al.Bacterial hazards of sludge brought ashore by the tsunami after the great East Japan earthquake of 2011. J Occup Health. 2012; 54(4):255–62.
Article
PubMed
Google Scholar
Crosa JH. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev. 1989; 53(4):517–30.
PubMed
CAS
PubMed Central
Google Scholar
Neilands JB. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem. 1995; 270(45):26723–6.
Article
PubMed
CAS
Google Scholar
Hider RC, Kong X. Chemistry and biology of siderophores. Nat Product Rep. 2010; 27(5):637–57.
Article
CAS
Google Scholar
Lane DJ. 16S/23S rRNA sequencing In: Stackebrandt E, Goodfellow M, editors. Nucleic Acid Techniques in Bacterial Systematics. Chichester, United Kingdom: John Wiley and Sons: 1991. p. 125–75.
Google Scholar
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al.Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005; 437(7057):376–80.
PubMed
CAS
PubMed Central
Google Scholar
Hyatt D, Chen GL, LoCascio P, Land M, Larimer F, Hauser L. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010; 11(1):119.
Article
PubMed
PubMed Central
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.BLAST+: architecture and applications. BMC bioinformatics. 2009; 10(1):421.
Article
PubMed
PubMed Central
Google Scholar
UniProt Consortium. Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res. 2013; 41(D1):43–7.
Article
Google Scholar
Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, et al.eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 2014; 42(D1):231–9. doi:10.1093/nar/gkt1253.
Article
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25(5):0955–64.
Article
CAS
Google Scholar
Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007; 35(9):3100–108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al.GenBank. Nucleic Acids Res. 2013; 41(D1):36–42.
Article
Google Scholar
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al.Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014; 42(D1):633–42. doi:10.1093/nar/gkt1244.
Article
Google Scholar
Yao Y, Tang H, Su F, Xu P. Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of arthrobacter. Sci Rep. 2015; 5:8642.
Article
PubMed
CAS
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32(5):1792–7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013; 30(12):2725–729.
Article
PubMed
CAS
PubMed Central
Google Scholar
Segata N, Börnigen D, Morgan XC, Huttenhower C. Phylophlan is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013; 4:2304.
Article
PubMed
PubMed Central
Google Scholar
Payne SM. Detection, isolation, and characterization of siderophores. Methods Enzymol. 1994; 235:329–44.
Article
PubMed
CAS
Google Scholar
Niu B, Fu L, Sun S, Li W. Artificial and natural duplicates in pyrosequencing reads of metagenomic data. BMC Bioinformatics. 2010; 11(1):187.
Article
PubMed
PubMed Central
Google Scholar
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014; 15(3):46.
Article
Google Scholar
Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res. 2014; 42(D1):553–9. doi:10.1093/nar/gkt1274.
Article
Google Scholar
Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics. 2012; 28(17):2223–30.
Article
PubMed
CAS
Google Scholar
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012; 28(24):3211–7.
Article
PubMed
CAS
Google Scholar
Yang CC, Iwasaki W. MetaMetaDB: A database and analytic system for investigating microbial habitability. PloS ONE. 2014; 9(1):e87126.
Article
PubMed
PubMed Central
Google Scholar
Jones D, Keddie RM. The genus Arthrobacter In: Dworkin MM, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. The Prokaryotes. New York: Springer: 2006. p. 945–60.
Google Scholar
Cacciari I, Lippi D. Arthrobacters: successful arid soil bacteria: a review. Arid Land Res Manag. 1987; 1(1):1–30.
Google Scholar
Crocker FH, Fredrickson JK, White DC, Ringelberg DB, Balkwill DL. Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. Microbiology. 2000; 146(6):1295–310.
Article
PubMed
CAS
Google Scholar
Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol. 1997; 63(8):3068–78.
PubMed
CAS
PubMed Central
Google Scholar
Fredrickson JK, Zachara JM, Balkwill DL, Kennedy D, Shu-mei WL, Kostandarithes HM, et al.Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford Site, Washington State. Appl Environ Microbiol. 2004; 70(7):4230–41.
Article
PubMed
CAS
PubMed Central
Google Scholar
Trajanovska S, Britz ML, Bhave M. Detection of heavy metal ion resistance genes in Gram-positive and Gram-negative bacteria isolated from a lead-contaminated site. Biodegradation. 1997; 8(2):113–24.
Article
PubMed
CAS
Google Scholar
Boylen CW. Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation. J Bacteriol. 1973; 113(1):33–7.
PubMed
CAS
PubMed Central
Google Scholar
Ensign JC. Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoietes. J Bacteriol. 1970; 103(3):569–77.
PubMed
CAS
PubMed Central
Google Scholar
Margesin R, Schinner F. Heavy metal resistant Arthrobacter sp.–A tool for studying conjugational plasmid transfer between Gram-negative and Gram-positive bacteria. J Basic Microbiol. 1997; 37(3):217–27.
Article
PubMed
CAS
Google Scholar
Bafana A, Krishnamurthi K, Patil M, Chakrabarti T. Heavy metal resistance in Arthrobacter ramosus strain G2 isolated from mercuric salt-contaminated soil. J Hazardous Mater. 2010; 177(1):481–6.
Article
CAS
Google Scholar
Suzuki Y, Banfield JF. Resistance to, and accumulation of, uranium by bacteria from a uranium-contaminated site. Geomicrobiol J. 2004; 21(2):113–21.
Article
CAS
Google Scholar
Guerinot ML. Microbial iron transport. Ann Rev Microbiol. 1994; 48(1):743–72.
Article
CAS
Google Scholar
Sugiura Y, Nomoto K. Phytosiderophores structures and properties of mugineic acids and their metal complexes In: Clarke MJ, Ibers JA, Mingos DMP, Palmer GA, Sadler PJ, Williams RJP, editors. Siderophores from Microorganisms and Plants. Berlin, Heidelberg: Springer: 1984. p. 107–35.
Google Scholar
Jurkevitch E, Hadar Y, Chen Y. Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl Environ Microbiol. 1992; 58(1):119–24.
PubMed
CAS
PubMed Central
Google Scholar
Barona-Gómez F, Wong U, Giannakopulos AE, Derrick PJ, Challis GL. Identification of a cluster of genes that directs Desferrioxamine Biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc. 2004; 126(50):16282–3.
Article
PubMed
Google Scholar
Günter K, Toupet C, Schupp T. Characterization of an iron-regulated promoter involved in desferrioxamine B synthesis in Streptomyces pilosus: repressor-binding site and homology to the diphtheria toxin gene promoter. J Bacteriol. 1993; 175(11):3295–302.
PubMed
PubMed Central
Google Scholar
Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987; 160(1):47–56.
Article
PubMed
CAS
Google Scholar
Shenker M, Chen Y. Increasing iron availability to crops: fertilizers, organo-fertilizers, and biological approaches. Soil Sci Plant Nutrition. 2005; 51(1):1–17.
Article
CAS
Google Scholar
Radzki W, Mañero FJG, Algar E, García JAL, García-Villaraco A, Solano BR. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie van Leeuwenhoek. 2013; 104(3):321–30.
Article
PubMed
CAS
PubMed Central
Google Scholar
Duhan JS, Dudeja SS, Khurana AL. Siderophore production in relation to N2 fixation and iron uptake in pigeon pea-Rhizobium symbiosis. Folia Microbiologica. 1998; 43(4):421–6. doi:10.1007/BF02818585.
Article
CAS
Google Scholar
Jflrgensen BB. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanograph. 1977; 22:814–32.
Article
Google Scholar
Schippers A, Jørgensen BB. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochimica et Cosmochimica Acta. 2002; 66(1):85–92.
Article
CAS
Google Scholar
Garcia-Gil LJ, Golterman HL. Kinetics of FeS-mediated denitrification in sediments from the Camargue (Rhone delta, southern France). FEMS Microbiol Ecol. 1993; 13(2):85–91.
Article
CAS
Google Scholar
Straub KL, Benz M, Schink B, Widdel F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol. 1996; 62(4):1458–1460.
PubMed
CAS
PubMed Central
Google Scholar
Hauck S, Benz M, Brune A, Schink B. Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance). FEMS Microbiol Ecol. 2001; 37(2):127–34.
Article
CAS
Google Scholar
Haaijer SCM, Lamers LPM, Smolders AJP, Jetten MSM, Op den Camp HJ. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiol J. 2007; 24(5):391–401.
Article
CAS
Google Scholar
Szczuciński W, Niedzielski P, Kozak L, Frankowski M, Zioła A, Lorenc S. Effects of rainy season on mobilization of contaminants from tsunami deposits left in a coastal zone of Thailand by the 26 December 2004 tsunami. Environ Geol. 2007; 53(2):253–64.
Article
Google Scholar
Ogawa Y, Ooka T, Shi F, Ogura Y, Nakayama K, Hayashi T, et al.The genome of Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, reveals new insights into the evolution of Firmicutes and the organism’s intracellular adaptations. J Bacteriol. 2011; 193(12):2959–71. doi:10.1128/JB.01500-10.
Article
PubMed
CAS
PubMed Central
Google Scholar
Veraldi S, Girgenti V, Dassoni F, Gianotti R. Erysipeloid: a review. Clinical Exp Dermatol. 2009; 34(8):859–62.
Article
CAS
Google Scholar
Makita K, Inoshita K, Kayano T, Uenoyama K, Hagiwara K, Asakawa M, et al.Temporal changes in environmental health risks and socio-psychological status in areas affected by the 2011 tsunami in Ishinomaki, Japan. Environ Pollut. 2013; 3(1):1.
Article
Google Scholar
Cho JC, Giovannoni SJ. Croceibacter atlanticus gen. nov., sp. nov., a novel marine bacterium in the family Flavobacteriaceae. Syst Appl Microbiol. 2003; 26(1):76–83.
Article
PubMed
CAS
Google Scholar
Alain K, Marteinsson VT, Miroshnichenko ML, Bonch-Osmolovskaya EA, Prieur D, Birrien JL. Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol. 2002; 52(4):1331–9.
PubMed
CAS
Google Scholar
Fiala G, Stetter KO. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol. 1986; 145(1):56–61.
Article
CAS
Google Scholar
Erauso G, Reysenbach AL, Godfroy A, Meunier JR, Crump B, Partensky F, et al.Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol. 1993; 160(5):338–49.
Article
CAS
Google Scholar
Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M, Querellou J, et al.Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J. 2009; 3(7):873–6.
Article
PubMed
CAS
Google Scholar
Oren A, Heldal M, Norland S, Galinski EA. Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles. 2002; 6(6):491–8.
Article
PubMed
CAS
Google Scholar
Kosono S, Haga K, Tomizawa R, Kajiyama Y, Hatano K, Takeda S, et al.Characterization of a multigene-encoded sodium/hydrogen antiporter (Sha) from Pseudomonas aeruginosa: its involvement in pathogenesis. J Bacteriol. 2005; 187(15):5242–248.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sugawara D, Goto K, Imamura F, Matsumoto H, Minoura K. Assessing the magnitude of the 869 Jogan tsunami using sedimentary deposits: Prediction and consequence of the 2011 Tohoku-oki tsunami. Sedimentary Geol. 2012; 282:14–26.
Article
Google Scholar