Webster MT, Hurst LD. Direct and indirect consequences of meiotic recombination: implications for genome evolution. Trends Genet. 2012;28:101–9.
Article
CAS
PubMed
Google Scholar
Sun P, Zhang R, Jiang Y, Wang X, Li J, Lv H, et al. Assessing the patterns of linkage disequilibrium in genic regions of the human genome. FEBS J. 2011;278:3748–55.
Article
CAS
PubMed
Google Scholar
Spencer CCA, Deloukas P, Hunt S, Mullikin J, Myers S, Silverman B, et al. The Influence of recombination on human genetic diversity. PLoS Genet. 2006;2:9.
Article
Google Scholar
Jeffreys AJ, Neumann R. Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot. Nat Genet. 2002;31:267–71.
Article
CAS
PubMed
Google Scholar
Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, et al. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science. 2010;12:876–9.
Article
Google Scholar
Petrov DA, Lozovskaya ER, Hartl DL. High intrinsic rate of DNA loss in Drosophila. Nature. 1996;384:346–9.
Article
CAS
PubMed
Google Scholar
Nam K, Ellegren H. Recombination drives vertebrate genome evolution. PLoS Genet. 2012;8:5.
Article
Google Scholar
Creighton H, McClintock B. A correlation of cytological and genetical crossing-over in Zea mays. Proc Natl Acad Sci U S A. 1931;17:492–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smukowski CS, Noor MAF. Recombination rate variation in closely related species. Heredity. 2011;107:496–508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong A, Thorleifsson G, Gudbjartsson DF, Masson G, Sigurdsson A, Jonasdottir A, et al. Fine scale recombination rate differences between sexes, populations and individuals. Nature. 2010;467:1099–103.
Article
CAS
PubMed
Google Scholar
Heffner E, Sorrells M, Jannink J. Genomic selection for crop improvement. Crop Sci. 2009;49:1–12.
Article
CAS
Google Scholar
Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet. 2009;10:381–91.
Article
CAS
PubMed
Google Scholar
Rodgers-Melnick E, Bradbury PJ, Elshire RJ, Glaubitz JC, Acharya CB, Mitchell SE, et al. Recombination in diverse maize is stable, predictable, and associated with genetic load. Proc Natl Acad Sci U S A. 2015;112:3823–8.
CAS
PubMed
PubMed Central
Google Scholar
Bauer E, Falque M, Walter H, Bauland C, Camisan C, Campo L, et al. Intraspecific variation of recombination rate in maize. Genome Biol. 2013;14:R103.
Article
PubMed
PubMed Central
Google Scholar
Levin DA. Pest pressure and recombination systems in plants. Amer Nat. 1975;109:437–51.
Article
Google Scholar
Petit RJ, Hampe A. Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst. 2006;37:187–214.
Article
Google Scholar
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313:1596–604.
Article
CAS
PubMed
Google Scholar
Neale DB, Kremer A. Forest tree genomics: growing resources and applications. Nature Rev Genet. 2011;12:111–22.
Article
CAS
PubMed
Google Scholar
Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, et al. The genome of Eucalyptus grandis. Nature. 2014;510:356–62.
CAS
PubMed
Google Scholar
Slavov GT, DiFazio SP, Martin J, Schackwitz W, Muchero W, Rodgers-Melnick E, et al. Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New Phytol. 2012;196:3.
Article
Google Scholar
Thavamanikumar S, Southerton SG, Bossinger G, Thumma BR. Dissection of complex traits in forest trees — opportunities for marker-assisted selection. Tree Genet Genomes. 2013;9:627–39.
Article
Google Scholar
Chancerel E, Lamy J-B, Lesur I, Noirot C, Klopp C, Ehrenmann F. High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. BMC Biol. 2013;11:50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plomion C, Aury J-M, Amselem J, Alaeitabar T, Barbe V, Belser C, et al. Decoding the oak Genome: Public Release of Sequence Data, Assembly, Annotation and Publication Strategies. 2015. doi:10.1111/1755-0998.12425.
Google Scholar
The Hardwood Genomics Project. Chinese Chestnut Genome and QTL Sequences V1.1. 2015. http://www.hardwoodgenomics.org/chinese-chestnut-genome. Accessed 29 Aug 2015.
Google Scholar
Kullan ARK, van Dyk MM, Jones N, Kanzler A, Bayley A, Myburg AA. High density genetic linkage maps with over 2,400 sequence-anchored DArT markers for genetic dissection in an F2 pseudo-backcross of Eucalyptus grandis x E. urophylla. Tree Genet Genomes. 2012;8:163–75.
Article
Google Scholar
Petroli CD, Sansaloni CP, Carling J, Steane DA, Vaillancourt RE, Myburg AA, et al. Genomic characterization of DArT markers based on high-density linkage analysis and physical mapping to the Eucalyptus genome. PLoS ONE. 2012;7:9.
Article
Google Scholar
Silva-Junior OB, Grattapaglia D. Genome-wide patterns of recombination, linkage disequilibrium and nucleotide diversity from pooled resequencing and single nucleotide polymorphism genotyping unlock the evolutionary history of Eucalyptus grandis. New Phytol. 2015. doi:10.1111/nph.13505.
Google Scholar
Brooker MIH. A new classification of the genus Eucalyptus. Aust Syst Bot. 2000;13:79–148.
Article
Google Scholar
Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, Foley W, Kulheim C, et al. Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes. 2012;8:463–508.
Article
Google Scholar
Byrne M. Phylogeny, diversity and evolution of eucalypts. In: Sharma AK, Sharma A, editors. Plant Genome: Biodiversity and Evolution, Part E: Phanerogams - Angiosperm, vol. 1. Enfield: Science Publishers; 2008. p. 303–46.
Google Scholar
Ribeiro T, Barrela RM, Bergès H, Marques C, Loureiro J, Morais-Cecilio L, et al. Advancing Eucalyptus genomics: cytogenomics reveals conservation of Eucalyptus genomes. Front Plant Sci. 2016;7:510.
Article
PubMed
PubMed Central
Google Scholar
Shepherd M, Kasem S, Lee D, Henry R. Construction of microsatellite linkage maps for Corymbia. Silvae Genet. 2006;55:228–38.
Google Scholar
Hudson CJ, Kullan ARK, Freeman JS, Faria DA, Grattapaglia D, Kilian A, et al. High synteny and colinearity among Eucalyptus genomes revealed by high-density comparative genetic mapping. Tree Genet Genomes. 2012;8:339–52.
Article
Google Scholar
Hudson CJ, Freeman JS, Myburg AA, Potts BM, Vaillancourt RE. Genomic patterns of species diversity and divergence in Eucalyptus. New Phytol. 2015;206:1378–90.
Article
CAS
PubMed
Google Scholar
Brondani RPV, Williams ER, Brondani C, Grattapaglia D. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol. 2006;6:20.
Article
PubMed
PubMed Central
Google Scholar
Cutter AD, Payseur BA. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet. 2013;14:262–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salomé PA, Bomblies K, Fitz J, Laitinen RAE, Warthmann N, Yant L, et al. The recombination landscape in Arabidopsis thaliana F2 populations. Heredity. 2011;108:447–55.
Article
PubMed
PubMed Central
Google Scholar
Comeron JM, Ratnappan R, Bailin S. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet. 2012;8:10.
Article
Google Scholar
Koren A, Ben-Aroya S, Kupiec M. Control of meiotic recombination initiation: a role for the environment? Curr Genet. 2002;42:129–39.
Article
CAS
PubMed
Google Scholar
John B. Meiosis. Cambridge: Cambridge University Press; 2005.
Google Scholar
Francis KE, Lam SY, Harrison BD, Bey AL, Berchowitz LE, Copenhaver GP. Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis. Proc Natl Acad Sci U S A. 2007;104:3913–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lenormand T, Dutheil J. Recombination differences between sexes: a role for haploid selection. PLoS Biol. 2005;3:3.
Article
Google Scholar
Van Os H, Stam P, Visser RGF, Van Eck HJ. RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet. 2005;112:30.
Article
CAS
PubMed
Google Scholar
Bartholomé J, Mandrou E, Mabiala A, Jenkins J, Nabihoudine I, Klopp C, Schmutz J, Plomion C, Gion J-M. High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly. New Phytol. 2014;206:4.
Google Scholar
Li W, Freudenberg J. Two-parameter characterization of chromosome-scale recombination rate. Genome Res. 2009;19:2300–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mugal CF, Nabholz B, Ellegren H. Genome-wide analysis in chicken reveals that local levels of genetic diversity are mainly governed by the rate of recombination. BMC Genomics. 2013;14:86.
Article
PubMed
PubMed Central
Google Scholar
Crisp MD, Burrows GE, Cook LG, Thornhill AH, Bowman DMJS. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat Commun. 2011;2:193.
Article
PubMed
Google Scholar
Serres-Giardi L, Belkhir K, David J, Glémin S. Patterns and evolution of nucleotide landscapes in seed plants. Plant Cell. 2012;24:1379–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK. Recombination and underappreciated factor in the evolution of plant genomes. Nat Rev Genet. 2007;8:77–84.
Article
CAS
PubMed
Google Scholar
Barnes TM, Kohara Y, Coulsen A, Hekimi S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics. 1995;141:1.
Google Scholar
Federoff NV. Transposable elements, epigenetics, and genome evolution. Science. 2012;338:758–67.
Article
Google Scholar
Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol. 2013;5:1886–901.
Article
PubMed
PubMed Central
Google Scholar
Bennetzen JL, Ma J, Devos KM. Mechanisms of recent genome size variation in flowering plants. Ann Bot. 2005;95:127–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grover CE, Wendel JF. Recent insights into mechanisms of genome size change in plants. J Botany. 2010. doi:10.1155/2010/382732.
Google Scholar
Dolgin ES, Charlesworth B. The effect of recombination rate on the distribution and abundance of transposable elements. Genetics. 2008;178:2169–77.
Article
PubMed
PubMed Central
Google Scholar
Wright SI, Agrawal N, Bureau TE. Effects of recombination and gene density on transposable element distributions in Arabidopsis thaliana. Genome Res. 2003;13:1897–903.
CAS
PubMed
PubMed Central
Google Scholar
Flowers JM, Molina J, Rubinstein S, Huang P, Schaal BA, Purugganan MD. Natural selection in gene-dense regions shapes the pattern of polymorphism in wild and domesticated rice. Mol Biol Evol. 2012;29:675–87.
Article
CAS
PubMed
Google Scholar
Begun DJ, Aquadro CF. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992;9:519–20.
Payseur BA, Nachman MW. Gene density and human nucleotide polymorphism. Mol Biol Evol. 2002;19:336–40.
Slotte T. The impact of linked selection on plant genomic variation. Brief Funct Genomics. 2014;13:268–75.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Street NR, Scofield DG, Invarsson PK. Natural selection and recombination rate variation shape nucleotide polymorphism across the genomes of three related Populus species. Genetics. 2016;202:1185–200.
Article
PubMed
Google Scholar
Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 2005;3:7.
Article
Google Scholar
Opperman R, Emmanuel E, Levy AA. The effect of sequence divergence on recombination between direct repeats in Arabidopsis. Genetics. 2004;168:2207–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–33.
Article
CAS
PubMed
Google Scholar
Freeman JS, Potts BM, Downes GM, Pilbeam D, Thavamanikumar S, Vaillancourt RE. Stability of quantitative trait loci for growth and wood properties across multiple pedigrees and environments in Eucalyptus globulus. New Phytol. 2013;198:1121–34.
Sansaloni CP, Petroli CD, Carling J, Hudson CJ, Steane DA, Myburg AA, et al. A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus. Plant Methods. 2010;6:16.
Article
PubMed
PubMed Central
Google Scholar
Steane DA, Myburg AA, Sansaloni C, Petroli C, Grattapaglia D, Kilian A, et al. DArT arrays for genetic mapping and diversity analysis of Eucalyptus. Mol Phylogenet Evol. 2011;59:206–24.
Article
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10–2.
Article
Google Scholar
Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, et al. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell. 2008;20:11–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Ooijen J. JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Wageningen, Netherlands: Kyazma B.V; 2006.
Google Scholar
Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93:77–8.
Article
CAS
PubMed
Google Scholar