Siefers N, Dang KK, Kumimoto RW, Bynum IV WE, Tayrose G, Holt III BF. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol. 2009;149:625–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quach TN, Nguyen HTM, Valliyodan B, Joshi T, Xu D, Nguyen HT. Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response. Mol Genet Genomics. 2015;290:1095–115.
Article
CAS
PubMed
Google Scholar
Li S, Li K, Ju Z, Cao DY, Fu DQ, Zhu HL, et al. Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening. BMC Genomics. 2016;17:36.
Article
PubMed
PubMed Central
Google Scholar
Sinha S, Maity SN, Lu J, de Crombrugghe B. Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci U S A. 1995;92:1624–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinha S, Kim IS, Sohn KY, de Crombrugghe B, Maity SN. Three classes of mutations in the A subunit of the CCAAT-binding factor CBF delineate functional domains involved in the three-step assembly of the CBF-DNA complex. Mol Cell Biol. 1996;16:328–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calvenzani V, Testoni B, Gusmaroli G, Lorenzo M, Gnesutta N, Petroni K, et al. Interactions and CCAAT-binding of Arabidopsis thaliana NF-Y subunits. PLoS One. 2012;7, e42902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frontini M, Imbriano C, Manni I, Mantovani R. Cell cycle regulation of NF-YC nuclear localization. Cell Cycle. 2004;3:217–22.
Article
CAS
PubMed
Google Scholar
Kahle J, Baake M, Doenecke D, Albig W. Subunits of the heterotrimeric transcription factor NF-Y are imported into the nucleus by distinct pathways involving importin beta and importin 13. Mol Cell Biol. 2005;25:5339–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene. 1999;239:15–27.
Article
CAS
PubMed
Google Scholar
Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000;290:2105–10.
Article
CAS
PubMed
Google Scholar
Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, et al. The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. Plant Cell. 2012;24:4777–92.
Article
PubMed
PubMed Central
Google Scholar
Braybrook SA, Harada JJ. LECs go crazy in embryo development. Trends Plant Sci. 2008;13:624–30.
Article
CAS
PubMed
Google Scholar
Gaj MD, Zhang S, Harada JJ, Lemaux PG. Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta. 2005;222:977–88.
Article
CAS
PubMed
Google Scholar
Laloum T, De Mita S, Gamas P, Baudin M, Niebel A. CCAAT-box binding transcription factors in plants: Y so many? Trends Plant Sci. 2013;18:157–66.
Article
CAS
PubMed
Google Scholar
Wenkel S, Turck F, Singer K, Gissot L, Gourrierec JL, Samach A, et al. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell. 2006;18:2971–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao SH, Kumimoto RW, Gnesutta N, Calogero AM, Mantovani R, Holt III BF. A distal CCAAT/NUCLEARFACTORY complex promotes chromatin looping at the FLOWERINGLOCUST promoter and regulates the timing of flowering in Arabidopsis. Plant Cell. 2014;26:1009–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, et al. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev. 2006;20:3084–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu JR, Warner DC, et al. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci U S A. 2007;104:16450–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell. 2008;20:2238–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
West M, Yee KM, Danao J, Zimmerman JL, Fischer RL, Goldberg RB, et al. LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell. 1994;6:1731–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lotan T, Ohto M, Yee MK, West MA, Lo R, Kwong RW, et al. Arabidopsis LEAFY COTILEDON1 is sufficient to induce embryo development in vegetative cells. Cell. 1998;93:1195–205.
Article
CAS
PubMed
Google Scholar
Liu JX, Srivastava R, Che P, Howell SH. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell. 2007;19:4111–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu JX, Howell SH. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. Plant Cell. 2010;22:782–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schellenbaum P, Jacques A, Maillot P, Bertsch C, Mazet F, Farine S, et al. Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.). Plant Cell Rep. 2008;27:1799–809.
Article
CAS
PubMed
Google Scholar
Maillot P, Lebel S, Schellenbaum P, Jacques A, Walter B. Differential regulation of SERK, LEC1-Like and pathogenesis-related genes during indirect secondary somatic embryogenesis in grapevine. Plant Physiol Biochem. 2009;47:743–52.
Article
CAS
PubMed
Google Scholar
Coustry F, Maity SN, Sinha S, de Crombrugghe B. The transcriptional activity of the CCAAT-binding factor CBF is mediated by two distinct activation domains, one in the CBF-B subunit and the other in the CBF-C subunit. J Biol Chem. 1996;271:14485–91.
Article
CAS
PubMed
Google Scholar
Kim IS, Sinha S, de Crombrugghe B, Maity SN. Determination offunctional domains in the C subunit of the CCAAT- binding factor (CBF)necessary for formation of a CBF-DNA complex: CBF- B interactssimultaneously with both the CBF-A and CBF-C subunits to form aheterotrimeric CBF molecule. Mol Cell Biol. 1996;16:4003–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romier C, Cocchiarella F, Mantovani R, Moras D. The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y. J Biol Chem. 2003;278:1336–45.
Article
CAS
PubMed
Google Scholar
Rípodas C, Castaingts M, Clúa J, Blanco F, Zanetti ME. Annotation, phylogeny and expression analysis of the nuclear factor Y families in common bean (Phaseolus vulgaris). Front Plant Sci. 2015;14:761.
Google Scholar
Maity SN, de Crombrugghe B. Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci. 1998;23:174–8.
Article
CAS
PubMed
Google Scholar
Maity SN, de Crombrugghe B. Biochemical analysis of the B subunit of the heteromeric CCAAT-binding factor. A DNA-binding domain and a subunit interaction domain are specified by two separate segments. J Biol Chem. 1992;267:8286–92.
CAS
PubMed
Google Scholar
Xing Y, Fikes JD, Guarente L. Mutations in yeast HAP2/HAP3 define a hybrid CCAAT box binding domain. EMBO J. 1993;12:4647.
CAS
PubMed
PubMed Central
Google Scholar
Hackenberg D, Wu Y, Voigt A, Adams R, Schramm P, Grimm B. Studies on differential nuclear translocation mechanism and assembly of the three subunits of the Arabidopsis thaliana transcription factor NF-Y. Mol Plant. 2012;5:876–88.
Article
CAS
PubMed
Google Scholar
Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol. 2010;153:980–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alam MM, Tanaka T, Nakamura H, Ichikawa H, Kobayashi K, Yaeno T, et al. Overexpression of a rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number. Plant Biotechnol J. 2014;13:85–96.
Article
PubMed
Google Scholar
Liu GT, Wang JF, Cramer G, Dai ZW, Duan W, Xu HG, et al. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol. 2012;12:174.
Article
PubMed
PubMed Central
Google Scholar
Fung RWM, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, et al. Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol. 2008;146:236–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolters H, Jurgens G. Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet. 2009;10:305–17.
Article
CAS
PubMed
Google Scholar
Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, et al. Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics. 2007;8:187.
Article
PubMed
PubMed Central
Google Scholar
Coombe BG, McCarthy MG. Dynamics of grape berry growth and physiology of ripening. Aust J Grape Wine Res. 2000;6:131–5.
Article
Google Scholar
Laporte P, Lepage A, Fournier J, Catrice O, Moreau S, Jardinaud MF, et al. The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection. J Exp Bot. 2013;65:481–94.
Article
PubMed
PubMed Central
Google Scholar
Soyano T, Kouchi H, Hirota A, Hayashi M. Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet. 2013;9, e1003352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li DY, Fu FY, Zhang HJ, Song FM. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genomics. 2015;16:771.
Article
PubMed
PubMed Central
Google Scholar
Peng XJ, Liu H, Wang D, Shen SH. Genome-wide identification of the Jatropha curcas MYB family and functional analysis of the abiotic stress responsive gene JcMYB2. BMC Genomics. 2016;17:251.
Article
PubMed
PubMed Central
Google Scholar
Kumimoto RW, Zhang Y, Siefers N, Holt 3rd BF. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J. 2010;63:379–91.
Article
CAS
PubMed
Google Scholar
Cao S, Kumimoto RW, Siriwardana CL, Risinger JR, Holt 3rd BF. Identification and characterization of NF-Y transcription factor families in the monocot model plant Brachypodium distachyon. PLoS One. 2011;6, e21805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu GX, Guo CC, Shan HY, Kong HZ. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci U S A. 2012;109:1187–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paradkar PN, Roth JA. Expression of the 1B isoforms of divalent metal transporter (DMT1) is regulated by interaction of NF-Y with a CCAAT-box element near the transcription start site. J Cell Physiol. 2007;211:183–8.
Article
CAS
PubMed
Google Scholar
Ni Z, Hu Z, Jiang Q, Zhang H. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol. 2013;82:113–29.
Article
CAS
PubMed
Google Scholar
Tan H, Yang X, Zhang X, Qu C, Mu J, Fu F, et al. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol. 2011;156:1577–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendes A, Kelly AA, van Erp H, Shaw E, Powers SJ, Kurup S, et al. bZIP67 regulates the omega-3 fatty acid content of Arabidopsis seed oil by activating fatty acid desaturase3. Plant Cell. 2013;25:3104–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, et al. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell. 2003;15:5–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mu J, Tan H, Hong S, Liang Y, Zuo J. Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development. Mol Plant. 2013;6:188–201.
Article
CAS
PubMed
Google Scholar
Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol. 2006;9:436–42.
Article
PubMed
Google Scholar
de Silva JM, Arrabaca MC. Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stress. J Plant Physiol. 2004;161:551–5.
Article
PubMed
Google Scholar
Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A. 2002;99:15898–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin J, Zhang H, Kong L, Gao G, Luo J. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res. 2014;42:D1182–7.
Article
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.
Article
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. 2011;28:2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reid KE, Olsson N, Schlosser J, Peng F, Lund ST. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 2006;6:27.
Article
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Wong DCJ, Sweetman C, Drew DP, Ford CM. VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine). BMC Genomics. 2013;14:882.
Article
PubMed
PubMed Central
Google Scholar
Anna M, Maryse L, Rossitza A. Profiling of sugar transporter genes in grapevine coping with water deficit. FEBS Lett. 2014;588:3989–97.
Article
Google Scholar
Peng WT, Lee YW, Nester EW. The phenolic recognition profiles of the Agrobacterium tumefaciens VirA protein are broadened by a high level of the sugar binding protein ChvE. J Bacteriol. 1998;180:5632–8.
CAS
PubMed
PubMed Central
Google Scholar