Marchal E, Badisco L, Verlinden H, Vandersmissen T, Van Soest S, Van Wielendaele P, Broeck JV. Role of the Halloween genes, Spook and Phantom in ecdysteroidogenesis in the desert locust, Schistocerca gregaria. J Insect Physiol. 2011;57(9):1240–8.
Article
CAS
PubMed
Google Scholar
ZY Z. The causes of death and control strategies to deal with Holcocerus hippophaecolus in the east of Erdos City, Inner Mongolia Autonomous Region. Hippophae. 2002; 15:7-11.
Zong SXLY, Lu CK, Xu ZC, Zhang LS. Prelininary Study on Biological Characteristic of Holcocerus hippophaecolus. Sci Silvae Sinicae. 2006;41:79–84.
Google Scholar
Luo YQLC, Xu ZC. Control strategies on a new serious forest pest insect-seabuckthorn carpenterworm, Holcocerus hippophaecolus (Chinese). Forest Pest Dis. 2003;5:25–8.
Google Scholar
Zong SXJF, Lu YQ, Xu ZC, Zhang LS, Liang SJ. Harm characteristics and population dynamics of Holcocerus hippophaecolus. J Beijing Forest Univ. 2005;25:7–10.
Google Scholar
Fang Y-L, Sun J-H, Zhao C-H, Zhang Z-N. Sex pheromone components of the sandthorn carpenterworm, Holcocerus hippophaecolus. J Chem Ecol. 2005;31(1):39–48.
Article
CAS
PubMed
Google Scholar
Shixiang Zong JZ, Youqing L, Liansheng Z, Guolong Y, Delu Z. Application sex pehromone lures for monitoring and controling the seabuckthorn moth. Chin Bulletin Entomol. 2010;47(6):1217–20.
Google Scholar
Wang R, Zong S-X, Yu L-F, Lu P-F, Luo Y-Q. Rhythms of volatile release from female and male sea buckthorn plants and electrophysiological response of sea buckthorn carpenter moths. J Plant Interact. 2014;9(1):763–74.
Article
CAS
Google Scholar
Wang R, Zhang L, Xu L, Zong S, Luo Y. Sensilla on the Antennae and Ovipositor of the Sea Buckthorn Carpenter Moth, Holcocerus hippophaecolus Hua et al. (Lepidoptera: Cossidae). Neotropical Entomol. 2015;44(1):68–76.
Article
CAS
Google Scholar
Li J, Zhou J, Sun R, Zhang H, Zong S, Luo Y, Sheng X, Weng Q. cDNA clong and sequence determination of the pheromone biosynthesis activating neuropeptid from the seabuckthorn carpenterworm, Holcocerus hippophaecolus (Lepidoptera: Cossidae). Arch Insect Biochem. 2013;82(4):183–95.
Article
CAS
Google Scholar
Tao J, Chen M, Zong S-X, Luo Y-Q. Genetic structure in the seabuckthorn carpenter moth (Holcocerus hippophaecolus) in China: the role of outbreak events, geographical and host factors. PLoS One. 2012;7(1):e30544.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pelosi P, Zhou J-J, Ban L, Calvello M. Soluble proteins in insect chemical communication. Cell Mol Life Sci. 2006;63(14):1658–76.
Article
CAS
PubMed
Google Scholar
Ban L, Zhang L, Yan Y, Pelosi P. Binding properties of a locust's chemosensory protein. Biochem Biophy Res Commun. 2002;293(1):50–4.
Article
CAS
Google Scholar
Kaissling KE. Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Sens. 2001;26(2):125–50.
Article
CAS
Google Scholar
Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda JM. Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci USA. 2005;102(15):5386–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leal WS, Nikonova L, Peng G. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett. 1999;464(1-2):85–90.
Article
CAS
PubMed
Google Scholar
Scaloni A, Monti M, Angeli S, Pelosi P. Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophy Res Commun. 1999;266(2):386–91.
Article
CAS
Google Scholar
Zhou J-J. Chapter ten-Odorant-binding proteins in insects. Vitam Horm. 2010;83:241–72.
Article
CAS
PubMed
Google Scholar
Glaser N, Gallot A, Legeai F, Montagne N, Poivet E, Harry M, Calatayud PA, Jacquin-Joly E. Candidate chemosensory genes in the Stemborer Sesamia nonagrioides. Int J Biol Sci. 2013;9(5):481–95.
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Wang B, Dong S, Cao D, Dong J, Walker WB, Liu Y, Wang G. Antennal Transcriptome Analysis and Comparison of Chemosensory Gene Families in Two Closely Related Noctuidae Moths, Helicoverpa armigera and H. assulta. PLoS One. 2015;10(2):e0117054.
Article
PubMed
PubMed Central
Google Scholar
Graham LA, Brewer D, Lajoie G, Davies PL. Characterization of a subfamily of beetle odorant-binding proteins found in hemolymph. Mol Cell Proteomics. 2003;2(8):541–9.
CAS
PubMed
Google Scholar
Pophof B. Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths antheraea polyphemus and Bombyx mori. Chem Sens. 2004;29(2):117–25.
Article
Google Scholar
Briand L, Swasdipan N, Nespoulous C, Bézirard V, Blon F, Huet JC, Ebert P, Pernollet JC. Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a brood pheromone carrier. Eur J Biochem. 2002;269(18):4586–96.
Article
CAS
PubMed
Google Scholar
Lartigue A, Campanacci V, Roussel A, Larsson AM, Jones TA, Tegoni M, Cambillau C. X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem. 2002;277(35):32094–8.
Article
CAS
PubMed
Google Scholar
Calvello M, Guerra N, Brandazza A, D'Ambrosio C, Scaloni A, Dani FR, Turillazzi S, Pelosi P. Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cell Mol Life Sci. 2003;60(9):1933–43.
Article
CAS
PubMed
Google Scholar
Jacquin-Joly E, Vogt RG, François M-C, Nagnan-Le Meillour P. Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chem Sens. 2001;26(7):833–44.
Article
CAS
Google Scholar
Maleszka J, Forêt S, Saint R, Maleszka R. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev Genes Evol. 2007;217(3):189–96.
Article
CAS
PubMed
Google Scholar
Vieira FG, Rozas J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol. 2011;3:476–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronderos DS, Smith DP. Diverse signaling mechanisms mediate volatile odorant detection in Drosophila. Fly. 2009;3(4):290–7.
Article
CAS
PubMed
Google Scholar
Liman ER, Zhang YV, Montell C. Peripheral coding of taste. Neuron. 2014;81(5):984–1000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benton R. Multigene Family Evolution: Perspectives from Insect Chemoreceptors. Trends Ecol Evol. 2015;30(10):590–600.
Article
PubMed
Google Scholar
de Fouchier A, Montagné N, Mirabeau O, Jacquin-Joly E. Current views on the function and evolution of olfactory receptors in Lepidoptera. RN. 2009;1:00-00.
Google Scholar
Hallem EA, Carlson JR. Coding of odors by a receptor repertoire. Cell. 2006;125(1):143–60.
Article
CAS
PubMed
Google Scholar
Carey AF, Wang G, Su C-Y, Zwiebel LJ, Carlson JR. Odorant reception in the malaria mosquito Anopheles gambiae. Nature. 2010;464(7285):66–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hopf TA, Morinaga S, Ihara S, Touhara K, Marks DS, Benton R. Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nat Commun. 2015;6. doi:10.1038/ncomms7077.
Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell. 1999;96(5):725–36.
Article
CAS
PubMed
Google Scholar
Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron. 1999;22(2):327–38.
Article
CAS
PubMed
Google Scholar
Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ. G protein-coupled receptors in Anopheles gambiae. Science. 2002;298(5591):176–8.
Article
CAS
PubMed
Google Scholar
Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci U S A. 2004;101(47):16653–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature. 2008;452(7190):1007–11.
Article
CAS
PubMed
Google Scholar
Stengl M, Funk NW. The role of the coreceptor Orco in insect olfactory transduction. J Comp Phy A. 2013;199(11):897–909.
Article
CAS
Google Scholar
Neuhaus EM, Gisselmann G, Zhang W, Dooley R, Störtkuhl K, Hatt H. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat Neurosci. 2005;8(1):15–7.
Article
CAS
PubMed
Google Scholar
Lundin C, Käll L, Kreher SA, Kapp K, Sonnhammer EL, Carlson JR, von Heijne G, Nilsson I. Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett. 2007;581(29):5601–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron. 2004;43(5):703–14.
Article
CAS
PubMed
Google Scholar
Benton R, Sachse S, Michnick SW, Vosshall LB. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 2006;4(2):e20.
Article
PubMed
PubMed Central
Google Scholar
Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG. Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Molec Biol. 2008;38(8):770–80.
Article
CAS
Google Scholar
Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature. 2008;452(7190):1002–6.
Article
CAS
PubMed
Google Scholar
Silbering AF, Benton R. Ionotropic and metabotropic mechanisms in chemoreception: 'chance or design'? EMBO Rep. 2010;11(3):173–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakagawa T, Sakurai T, Nishioka T, Touhara K. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science (New York, NY). 2005;307(5715):1638–42.
Article
CAS
Google Scholar
Andersson MN, Löfstedt C, Newcomb RD. Insect olfaction and the evolution of receptor tuning. Frontiers Ecol Evol. 2015;3:53.
Google Scholar
Bohbot JD, Pitts RJ. The narrowing olfactory landscape of insect odorant receptors. Frontiers Ecol Evol. 2015;3:39.
Article
Google Scholar
Kreher SA, Mathew D, Kim J, Carlson JR. Translation of sensory input into behavioral output via an olfactory system. Neuron. 2008;59(1):110–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pellegrino M, Steinbach N, Stensmyr MC, Hansson BS, Vosshall LB. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature. 2011;478(7370):511–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Yang P, Chen D, Jiang F, Li Y, Wang X, Kang L. Identification and functional analysis of olfactory receptor family reveal unusual characteristics of the olfactory system in the migratory locust. Cell Mol Life Sci. 2015;72(22):4429–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant Ionotropic Glutamate Receptors as Chemosensory Receptors inDrosophila. Cell. 2009;136(1):149–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R. Functional architecture of olfactory ionotropic glutamate receptors. Neuron. 2011;69(1):44–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rytz R, Croset V, Benton R. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem Mol Biol. 2013;43(9):888–97.
Article
CAS
PubMed
Google Scholar
Koh T-W, He Z, Gorur-Shandilya S, Menuz K, Larter NK, Stewart S, Carlson JR. The Drosophila IR20a clade of ionotropic receptors are candidate taste and pheromone receptors. Neuron. 2014;83(4):850–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ai M, Min S, Grosjean Y, Leblanc C, Bell R, Benton R, Suh GS. Acid sensing by the Drosophila olfactory system. Nature. 2010;468(7324):691–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grosjean Y, Rytz R, Farine J-P, Abuin L, Cortot J, Jefferis GS, Benton R. An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature. 2011;478(7368):236–40.
Article
CAS
PubMed
Google Scholar
Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, Winkler M, Möbius W, Howard J, Göpfert MC. Drosophila auditory organ genes and genetic hearing defects. Cell. 2012;150(5):1042–54.
Article
CAS
PubMed
Google Scholar
Chyb S, Dahanukar A, Wickens A, Carlson JR. Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc Natil Acad Sci. 2003;100 suppl 2:14526–30.
Article
CAS
Google Scholar
Dahanukar A, Lei Y-T, Kwon JY, Carlson JR. Two Gr genes underlie sugar reception in Drosophila. Neuron. 2007;56(3):503–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiao Y, Moon SJ, Wang X, Ren Q, Montell C. Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Cur Biol. 2008;18(22):1797–801.
Article
CAS
Google Scholar
Miyamoto T, Amrein H. Diverse roles for the Drosophila fructose sensor Gr43a. Fly. 2014;8(1):19–25.
Article
CAS
PubMed
Google Scholar
Moon SJ, Lee Y, Jiao Y, Montell C. A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Cur Biol. 2009;19(19):1623–7.
Article
CAS
Google Scholar
Kwon JY, Dahanukar A, Weiss LA, Carlson JR. The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci. 2007;104(9):3574–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhatla N, Horvitz HR. Light and hydrogen peroxide inhibit C. elegans feeding through gustatory receptor orthologs and pharyngeal neurons. Neuron. 2015;85(4):804–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masek P, Keene AC. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons. PLoS Genet. 2013;9(9):e1003710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, le Coutre J, Ninomiya Y, Damak S. Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci. 2010;30(25):8376–82.
Article
CAS
PubMed
Google Scholar
Wisotsky Z, Medina A, Freeman E, Dahanukar A. Evolutionary differences in food preference rely on Gr64e, a receptor for glycerol. Nature Neurosci. 2011;14(12):1534–41.
Article
CAS
PubMed
Google Scholar
Xia Y-H, Zhang Y-N, Hou X-Q, Li F, Dong S-L. Large number of putative chemoreception and pheromone biosynthesis genes revealed by analyzing transcriptome from ovipositor-pheromone glands of Chilo suppressalis. Sci Rep. 2015;5. doi:10.1038/srep07888.
Yin J, Zhuang X, Wang Q, Cao Y, Zhang S, Xiao C, Li K. Three amino acid residues of an odorant‐binding protein are involved in binding odours in Loxostege sticticalis L. Insect Mol Biol. 2015;24(5):528–38.
Article
CAS
PubMed
Google Scholar
Zhang YN, Jin JY, Jin R, Xia YH, Zhou JJ, Deng JY, Dong SL. Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker). PLoS One. 2013;8(7):e69715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu SH, Sun L, Yang RN, Wu KM, Guo YY, Li XC, Zhou JJ, Zhang YJ. Molecular characterization and differential expression of olfactory genes in the antennae of the black cutworm moth Agrotis ipsilon. PLoS One. 2014;9(8):e103420.
Article
PubMed
PubMed Central
Google Scholar
Gu SH, Zhou JJ, Wang GR, Zhang YJ, Guo YY. Sex pheromone recognition and immunolocalization of three pheromone binding proteins in the black cutworm moth Agrotis ipsilon. Insect Biochem Mol Biol. 2013;43(3):237–51.
Article
CAS
PubMed
Google Scholar
De Biasio F, Riviello L, Bruno D, Grimaldi A, Congiu T, Sun YF, Falabella P. Expression pattern analysis of odorant-binding proteins in the pea aphid Acyrthosiphon pisum. Insect Sci. 2014;22(2):220–34.
Hu P, Wang J, Cui M, Tao J, Y Luo. Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis. Sci Rep. 2016; 6. doi:10.1038/srep26652.
Vogt RG, Große-Wilde E, Zhou JJ. The Lepidoptera Odorant Binding Protein gene family: Gene gain and loss within the GOBP/PBP complex of moths and butterflies. Insect BiochemMol Biol. 2015;62:142–53.
Article
CAS
Google Scholar
Jiang X, Pablo P, Ewald GW, Heinz B, Jürgen K. Identification and Characterization of Two “Sensory Neuron Membrane Proteins” (SNMPs) of the Desert Locust, Schistocerca gregaria(Orthoptera: Acrididae). J Insect Sci. 2016;16(1), DOI: 10.1093/jisesa/iew015.
Vogt RG, Miller NE, Litvack R, Fandino RA, Sparks J, Staples J, Friedman R, Dickens JC. Insect SNMP gene family. Insect Bioche Mole Biol. 2009;39:448–56.
Article
CAS
Google Scholar
Bv S, Jiggins CD, Briscoe AD, Papa R. Genome-wide analysis of ionotropic receptors provides insight into their evolution in Heliconius butterflies. BMC Genomics. 2016;17(1):1–15.
Google Scholar
Sato K, Tanaka K, Touhara K. Sugar-regulated cation channel formed by an insect gustatory receptor. Proc Natl Acad Sci. 2011;108(28):11680–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H-J, Anderson AR, Trowell SC, Luo A-R, Xiang Z-H, Xia Q-Y. Topological and functional characterization of an insect gustatory receptor. PLoS One. 2011;6(8):e24111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu W, Papanicolaou A, Zhang H-J, Anderson A. Expansion of a bitter taste receptor family in a polyphagous insect herbivore. Scientific Reports. 2015;6. doi:10.1038/srep23666.
Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.
Article
CAS
PubMed
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):93–9.
Article
CAS
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mole Biol Evol. 1987;4(4):406–25.
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar