Barker MS, Wolf PG. Unfurling fern biology in the genomics age. BioScience. 2010;60:177–85.
Article
Google Scholar
McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol. 2013;66:526–38.
Article
CAS
PubMed
Google Scholar
Wolf PG, Sessa EB, Merchant DB, Li FW, Rothfels CJ, Sigel EM, et al. An exploration into fern genome space. Genome Biol Evol. 2015;7:2533–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf PG, Der JP, Duffy AM, Davidson JB, Grusz AL, Pryer KM. The evolution of chloroplast genes and genomes in ferns. Plant Mol Biol. 2011;76:251–61.
Article
CAS
PubMed
Google Scholar
Johnson MTJ, Carpenter EJ, Tian Z, Bruskiewich R, Burris JN, Carrigan CT, et al. Evaluating methods for isolating total RNA and predicting success of sequencing phylogenetically diverse plant transcriptomes. Plos One. 2012;7:e50226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao L, Wang B, Wang ZW, Zhou Y, Su YJ, Wang T. Plastome sequences of Lygodium japonicum and Marsilea crenata reveal the genome organization transformation from basal ferns to core leptosporangiates. Genome Biol Evol. 2013;5:1403–7.
Article
PubMed
PubMed Central
Google Scholar
Rothfels CJ, Larsson A, Li FW, Sigel EM, Huiet L, Burge DO, Ruhsam M, Graham SW, Stevenson D, Wong GKS, Korall P, Pryer KM. Transcriptome-mining for single-copy nuclear markers in ferns. Plos One. 2013;8:e76957.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li FW, Pryer KM. Crowdfunding the Azolla fern genome project: a grassroots approach. GigaScience. 2014;3:16.
Article
PubMed
PubMed Central
Google Scholar
Sessa EB, Banks JA, Barker MS, Der JP, Duffy AM, Graham SW, et al. Between two fern genomes. GigaScience. 2014;3:15.
Article
PubMed
PubMed Central
Google Scholar
Bégu D, Castandet B, Araya A. RNA editing restores critical domains of a group I intron in fern mitochondria. Curr Genet. 2011;57:317–25.
Article
PubMed
Google Scholar
Der JP, Barker MS, Wickett NJ, dePamphlis CW, Wolf PG. De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum. BMC Genomics. 2011;12:99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boothby TC, Zipper RS, van der Weele CM, Wolniak SM. Removal of retained introns regulates translation in the rapidly developing gametophyte of Marsilea vestita. Dev Cell. 2013;24:517–29.
Article
CAS
PubMed
Google Scholar
Bushart TJ, Cannon AE, ul Hague A, San Miguel P, Mostajeran K, Clark GB, et al. RNA-seq analysis identifies potential modulators of gravity response in spores of Ceratopteris (Pteridaceae): Evidence for modulation by calcium pumps and apyrase activity. Am J Bot. 2013;100:161–74.
Article
CAS
PubMed
Google Scholar
Li FW, Villareal JC, Kelly S, Rothfels CJ, Melkonian M, Frangedakis E, et al. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc Natl Acad Sci U S A. 2014;111:6672–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci U S A. 2014;111:E4859–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin Y, Johns MA, Cao H, Rupani M. A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of cellulose synthase superfamily. BMC Genomics. 2014;15:260.
Article
PubMed
PubMed Central
Google Scholar
Aya K, Kobayashi M, Tanaka J, Ohyanagi H, Suzuki T, Yano K, et al. De novo transcriptome assembly of a fern, Lygodium japonicum, and a web resource database, Ljtrans DB. Plant Cell Physiol. 2015;56:e5(1-14).
Guo W, Grewe F, Mower JP. Variable frequency of plastid RNA editing among ferns and repeated loss of uridine-to-cytidine editing from vascular plants. Plos One. 2015. doi:10.1371/journal.pone.0117075.
Google Scholar
Vanneste KL, Sterck A, Myburg A, Van de Peer Y, Mizrachi E. Horsetails are ancient polyploids: Evidence from Equisetum giganteum. Plant Cell. 2015;27:1567–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soltis PS, Soltis DE, Savolainen V, Crane PR, Barraclough TG. Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils. Proc Natl Acad Sci U S A. 2002;99:4430–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schuettpelz E, Pryer KM. Reconciling extreme branch length differences: Decoupling time and rate through the evolutionary history of filmy ferns. Syst Biol. 2006;55:485–502.
Article
PubMed
Google Scholar
Schuettpelz E, Pryer KM. Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon. 2007;56:1037–50.
Article
Google Scholar
Schuettpelz E, Schneider H, Huiet L, Windham MD, Pryer KM. A molecular phylogeny of the fern family Pteridaceae: Assessing overall relationships and the affinities of previously unsampled genera. Mol Phylogenet Evol. 2007;44:1172–85.
Article
CAS
PubMed
Google Scholar
Korall PE, Schuettpelz E, Pryer KM. Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns. Syst Biol. 2010;64:2786–92.
Google Scholar
Rothfels CJ, Schuettpelz E. Accelerated rate of molecular evolution for vittarioid ferns is strong and not driven by selection. Syst Biol. 2014;63:31–54.
Article
CAS
PubMed
Google Scholar
Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GKS, Carpenter EJ, et al. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Mol Biol Evol. 2015;32:2001–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Britten RJ. Rates of DNA evolution differ between taxonomic groups. Science. 1986;231:1393–8.
Article
CAS
PubMed
Google Scholar
Schubart CD, Diesel R, Hodges SB. Rapid evolution to terrestrial life in Jamaican crabs. Nature. 1998;393:363–5.
Article
CAS
Google Scholar
Johnson KP, Seger J. Elevated rates of nonsynonymous substitution in island birds. Mol Biol Evol. 2001;18:874–81.
Article
CAS
PubMed
Google Scholar
Lumbsch HT, Hipp AL, Divakar PK, Blanco O, Crespo A. Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). BMC Evol Biol. 2008;8:257.
Article
PubMed
PubMed Central
Google Scholar
Otálora MAG, Aragón G, Martínez I, Wedin M. Cardinal characters on a slippery slope—a re-evaluation of phylogeny, character evolution, and evolutionary rates in the jelly lichens (Collemataceae s. str.). Mol Phylogenet Evol. 2013;68:185–98.
Article
PubMed
Google Scholar
Jobson RW, Albert VA. Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. Cladistics. 2002;18:127–36.
Google Scholar
Müller K, Albach DC. Evolutionary rates in Veronica L. (Plantaginaceae): Disentangling the influence of life history and breeding system. J Mol Evol. 2010;70:44–56.
Article
PubMed
Google Scholar
Wicke S, Schäferhoff B, dePamphlis CW, Müller KF. Disproportionate plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae. Mol Biol Evol. 2013;31:529–45.
Article
PubMed
Google Scholar
Kimura M. DNA and the neutral theory. Philos Trans R Soc B. 1986;312:43–354.
Article
Google Scholar
Müller K, Borsch T. Phylogenetics of Utricularia (Lentibulariaceae) and molecular evolution of the trnK intron in a lineage with high substitutional rates. Plant Syst Evol. 2005;250:39–67.
Article
Google Scholar
Shen B, Fang T, Yang T, Jones G, Irwin DM, Zhang S. Relaxed evolution in the tyrosine aminotransferase gene Tat in Old World fruit bats (Chiroptera: Pteropodidae). Plos One. 2014. doi:10.1371/journal.pone.009748.
Google Scholar
De La Torre AR, Lin YC, Van de Peer Y, Ingvarsson PK. Genome-wide analysis reveals diverged patterns of codon bias, gene expression and rates of sequence evolution in Picea gene families. Genome Biol Evol. 2015. doi:10.1093/gbe/evv044.
Google Scholar
Laird CD, McConaughy BL, McCarthy BJ. Rate of fixation of nucleotide substitutions in evolution. Nature. 1969;224:149–54.
Article
CAS
PubMed
Google Scholar
Martin AP, Palumbi SR. Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci U S A. 1993;90:4087–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaut BS, Morton BR, McCaig BC, Clegg MT. Substitution rate comparisons between grasses and palms: Synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci U S A. 1996;93:10274–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen AP, Brown JH, Gillooly JF. Global biodiversity, biochemical kinetics, and the energy-equivalence rule. Science. 2002;297:1545–8.
Article
CAS
PubMed
Google Scholar
Wright SD, Gray RD, Gardner RC. Energy and the rate of evolution: inferences from plant rDNA substitution rates in the western Pacific. Evolution. 2003;57:2893–8.
Article
PubMed
Google Scholar
Davies TJ, Savolainen V, Chase MW, Moat J, Barraclough TG. Environmental energy and evolutionary rates in flowering plants. Philos Trans R Soc B. 2004;271:2195–200.
Google Scholar
Evans KL, Gaston KJ. Can the evolutionary-rates hypothesis explain species-energy relationships? Funct Ecol. 2005;19:899–915.
Article
Google Scholar
Evans KL, Warren PH, Gaston KJ. Species-energy relationships at the macroecological scale: a review of mechanisms. Biol Rev. 2005;80:1–25.
Article
PubMed
Google Scholar
Wright S, Keeling J, Gillman L. The road from Santa Rosalia: A faster tempo of evolution in tropical climates. Proc Natl Acad Sci U S A. 2009;20:7718–22.
Google Scholar
Bromham L. Why do species vary in their rate of molecular evolution? Biol Lett. 2009;5:401–4.
Article
PubMed
PubMed Central
Google Scholar
Ibarra-Laclette E, Albert VA, Pérez-Torres CA, Zamudio-Hernández F, Ortega-Estrada M, Herrera-Estrella A, Herrera-Estrella L. Transcriptomics and molecular evolutionary rate of the bladderwort (Utricularia), a carnivorous plant with a minimal genome. BMC Plant Biol. 2011;11:101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lourenço JM, Glémin S, Chiari Y, Galtier N. The determinants of molecular substitution process in turtles. J Evol Biol. 2013;26:38–50.
Article
PubMed
Google Scholar
Chao L, Carr DE. The molecular clock and the relationship between population size and generation time. Evolution. 1993;47:688–90.
Article
Google Scholar
Welch JJ, Bininda-Emonds ORP, Bromham L. Correlates of rate variation in mammalian protein-coding sequences. BMC Evol Biol. 2008;8:53.
Article
PubMed
PubMed Central
Google Scholar
Mooers AØ, Harvey PH. Metabolic rate, generation time, and the rate of molecular evolution in birds. Mol Phylogenet Evol. 1994;3:344–50.
Article
CAS
PubMed
Google Scholar
Lutzoni F, Pagel M. Accelerated evolution as a consequence of transitions to mutualism. Proc Natl Acad Sci U S A. 1997;94:11422–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whittle CA. The influence of environmental factors, the pollen : ovule ratio and seed bank persistence on molecular evolutionary rates in plants. J Evol Biol. 2006;19:302–8.
Article
PubMed
Google Scholar
Lanfear R, Ho SYW, Davies TJ, Moles AT, Aarssen L, Swenson NG, Warman L, Zanne AE, Allen AP. Taller plants have lower rates of molecular evolution. Nat Commun. 2013;4:1879.
Article
PubMed
Google Scholar
Parkinson CL, Mower JP, Qiu YL, Shirk AJ, Song K, Young ND, et al. Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evol Biol. 2005;5:73.
Article
PubMed
PubMed Central
Google Scholar
Rothfels CJ, Li FW, Sigel EM, Huiet L, Larsson A, Burge DO, et al. The evolutionary history of ferns inferred from 25 low-copy nuclear genes. Am J Bot. 2015;102:1089–107.
Article
CAS
PubMed
Google Scholar
Kimura M. Evolutionary rate at the molecular level. Nature. 1968;217:624–6.
Article
CAS
PubMed
Google Scholar
Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17:1195–214.
Article
CAS
PubMed
Google Scholar
Newcomb TG, Allen KJ, Tkeshelashvili L, Loeb LA. Detection of tandem CC→TT mutations induced by oxygen radicals using mutation-specific PCR. Mutat Res. 1999;417:21–30.
Article
Google Scholar
Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. Effects of size and temperature on metabolic rate. Science. 2001;293:2248–51.
Article
CAS
PubMed
Google Scholar
Gillooly JF, Allen AP, West GB, Brown JH. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc Natl Acad Sci U S A. 2005;102:140–5.
Article
CAS
PubMed
Google Scholar
Fontanillas E, Welch JJ, Thomas JA, Bromham L. The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla. BMC Evol Biol. 2007;l7:95.
Article
Google Scholar
Martin AP. Substitution rates of organelle and nuclear genes in sharks: Implicating metabolic rate (again). Mol Biol Evol. 1999;16:996–1002.
Article
CAS
PubMed
Google Scholar
Hoffmann S, Spitkovsky D, Radicella JP, Epe B, Wiesner RJ. Reactive oxygen species derived from the mitochondrial respiratory chain are not responsible for the basal levels of oxidative base modifications observed in nuclear DNA of mammalian cells. Free Radical Bio Med. 2004;36:765–73.
Article
CAS
Google Scholar
Lanfear R, Thomas JA, Welch JJ, Brey T, Bromham L. Metabolic rate does not calibrate the molecular clock. Proc Natl Acad Sci U S A. 2007;104:15388–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park C, Qian W, Zhang J. Genomic evidence for elevated mutation rates in highly expressed genes. EMBO Rep. 2012;13:1123–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Furano AV. Breaking bad: The mutagenic effect of DNA repair. DNA Repair. 2015;32:43–51.
Article
PubMed
PubMed Central
Google Scholar
Klekowski EJ. Mutational load in clonal plants: a study of two fern species. Evolution. 1984;38:417–26.
Article
Google Scholar
Schneider H, Smith AR, Cranfill R, Hildebrand TJ, Haufler CH, Ranker TA. Unraveling the phylogeny of polygrammoid ferns (Polypodiaceae and Grammitidaceae): exploring aspects of the diversification of epiphytic plants. Mol Phylogenet Evol. 2003;31:1041–63.
Article
Google Scholar
Watkins JEJ, Cardelús CL. Ferns in an angiosperm world: Cretaceous radiation into the epiphytic niche and diversification on the forest floor. Int J Plant Sci. 2012;173:695–710.
Article
Google Scholar
Cherry JL. Expression level, evolutionary rate, and the cost of expression. Genome Biol Evol. 2010;2:757–69.
Article
PubMed
PubMed Central
Google Scholar
Chuang TJ, Chiang TW. Impacts of pretranscriptional DNA methylation, transcriptional transcription factor, and posttranscriptional microRNA regulations on protein evolutionary rate. Genome Biol Evol. 2014;6:1530–41.
Article
PubMed
PubMed Central
Google Scholar
Liu HJ, Tang ZX, Han XM, Yang ZL, Zhang FM, Yang HL, Lui YJ, Zeng QY. Divergence in enzymatic activities in the soybean GST supergene family provides new insight into the evolutionary dynamics of whole genome duplications. Mol Biol Evol. 2015;32:2844–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li FW, Kuo LY, Pryer KM, Rothfels CJ. Genes translocated into the plastid inverted repeat show decelerated substitution rates and elevated GC content. Genome Biol Evol. 2016. In press.
Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I. The Chromosome Counts Database (CCDB) - a community resource of plant chromosome numbers. New Phytol. 2015;206:19–26.
Article
PubMed
Google Scholar
Bromham L, Cardillo M. Testing the latitudinal gradient in species richness and rates of molecular evolution. J Evol Biol. 2003;16:200–7.
Article
CAS
PubMed
Google Scholar
Hebert PDN, Remigio EA, Colbourne JK, Taylor DJ, Wilson CC. Accelerated molecular evolution in halophilic crustaceans. Evolution. 2002;56:090–926.
Article
Google Scholar
Colbourne JK, Wilson CC, Hebert PDN. The systematics of Australian Daphnia and Daphniopsis (Crustacea: Cladocera): a shared phylogenetic history transformed by habitat-specific rates of evolution. Biol J Linn Soc. 2006;89:469–88.
Article
Google Scholar
Ossowski S, Schneeberger K, Lucas-Lledó KI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science. 2009;327:92–4.
Article
Google Scholar
De Vries FWTP. The cost of maintenance processes in plant cells. Ann Bot-London. 1975;39:77–92.
Google Scholar
Nakazawa H, English E, Randell PL, Nakazawa K, Martel N, Armstrong BK, Yamasaki H. UV and skin cancer: Specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc Natl Acad Sci U S A. 1994;91:360–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
oneKP. 2016. http://www.onekp.com. Accessed 1 Sept 2014.
Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci U S A. 2010;107:4623–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Smith SA. Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes: Improving accuracy and matrix occupancy for phylogenomics. Mol Biol Evol. 2014;31:3081–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Short Oligonucleotide Analysis Package. 2013. http://soap.genomics.org.cn/SOAPdenovo-Trans.html. Accessed 1 Sept 2014.
Garbherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2013;29:644–52.
Article
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat Protoc. 2013;8:1494–512.
Article
CAS
PubMed
Google Scholar
Lerchner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ. ProteinOrtho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics. 2011;12:124.
Article
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113.
Article
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Junier T, Zdobnov EM. The Newick Utilities: High-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics. 2010;26:1669–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu YC, Rasmussen MD, Bansal MS, Kellis M. TreeFix: Statistically informed gene tree error correction using species trees. Syst Biol. 2013;62:110–20.
Article
PubMed
Google Scholar
Wehe A. OptRoot. 2012. http://www.wehe.us/optroot.html. Accessed 1 Sept 2014.
Wolf PG, Rowe CA, Sinclair RB, Hasebe M. Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA Res. 2003;10:59–65.
Article
CAS
PubMed
Google Scholar
Pond SLK, Frost SDQ, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21:676–9.
Article
CAS
PubMed
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
Article
CAS
PubMed
Google Scholar
Conesa A, Götz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:1–12.
Article
Google Scholar
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–35.
Article
PubMed
PubMed Central
Google Scholar
Götz S, Arnold R, Sebastián-León P, Martín-Rodríguez S, Tischler P, Jehl MA, et al. B2G-FAR, a species-centered GO annotation repository. Bioinformatics. 2011;27:919–24.
Article
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blake JA. Ten quick tips for using the gene ontology. PLoS Comput Biol. 2013;9:E1003343. doi:10.1371/journal.pcbi.1003343.
Article
PubMed
PubMed Central
Google Scholar
The Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43(Database issue):D1049–56.
Article
Google Scholar
Haibao T, Klopfenstein D, Pedersen B, Flick P, Sato K, Ramirez F, et al. GOATOOLS: Tools for Gene Ontology. Zenodo. 2015.