Osorio S, Scossa F, Fernie A. Molecular regulation of fruit ripening. Front Plant Sci. 2013;4:198.
PubMed
PubMed Central
Google Scholar
Coombe B. Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res. 1995;1(2):104–10.
Article
Google Scholar
Lijavetzky D, Carbonell-Bejerano P, Grimplet J, Bravo G, Flores P, Fenoll J, Hellín P, Oliveros JC, Martínez-Zapater JM. Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS One. 2012;7(6):e39547.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pilati S, Perazzolli M, Malossini A, Cestaro A, Demattè L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. BMC Genomics. 2007;8(1):428.
Article
PubMed
PubMed Central
Google Scholar
Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC. Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics. 2007;8(1):187.
Article
PubMed
PubMed Central
Google Scholar
Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L, Maltese F, Choi YH, Grimplet J, Martinez-Zapater JM, Verpoorte R. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol. 2011;11(1):149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuhn N, Guan L, Dai ZW, Wu B-H, Lauvergeat V, Gomès E, Li S-H, Godoy F, Arce-Johnson P, Delrot S. Berry ripening: recently heard through the grapevine. J Exp Bot. 2014;65(16):4543–59.
Article
CAS
PubMed
Google Scholar
Robinson SP, Davies C. Molecular biology of grape berry ripening. Aust J Grape Wine Res. 2000;6(2):175–88.
Article
CAS
Google Scholar
Liu X, Zhai R, Feng W, Zhang S, Wang Z, Qiu Z, Zhang J, Ma F, Xu L. Proteomic analysis of ‘Zaosu’pear (Pyrus bretschneideri Rehd.) and its early-maturing bud sport. Plant Sci. 2014;224:120–35.
Article
CAS
PubMed
Google Scholar
Zhang Y-J, Wang X-J, Wu J-X, Chen S-Y, Chen H, Chai L-J, Yi H-L. Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening. PLoS One. 2014;9(12):e116056.
Article
PubMed
PubMed Central
Google Scholar
Guo D-L, Zhang G-H. A New Early-Ripening Grape Cultivar–‘Fengzao’. Acta Hortic. 2015;1082:153–6.
Google Scholar
Guo D-L, Guo M-X, Zhang G-H. Comparisons of berry development characteristics between the early ripening bud mutants of grape and their parents. Plant Physiol J. 2014;50(11):1733–41.
Google Scholar
Zhong S, Joung J-G, Zheng Y, Chen Y-r, Liu B, Shao Y, Xiang JZ, Fei Z, Giovannoni JJ. High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb Protoc. 2011;2011(8):940–9.
Article
PubMed
Google Scholar
Wang L, Si Y, Dedow LK, Shao Y, Liu P, Brutnell TP. A low-cost library construction protocol and data analysis pipeline for Illumina-based strand-specific multiplex RNA-seq. PLoS One. 2011;6(10):e26426.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449(7161):463–U465.
Article
CAS
PubMed
Google Scholar
Vitulo N, Forcato C, Carpinelli EC, Telatin A, Campagna D, D'Angelo M, Zimbello R, Corso M, Vannozzi A, Bonghi C, et al. A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype. BMC Plant Biol. 2014;14(1):99.
Article
PubMed
PubMed Central
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. bioRxiv. 2014; doi:http://dx.doi.org/10.1101/002832.
Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–9.
Article
CAS
PubMed
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C-Y, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39 suppl 2:W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Yin X, Cheng C, Wang H, Guo R, Xu X, Zhao J, Zheng Y, Wang X. Evolutionary and expression analysis of a MADS-box gene superfamily involved in ovule development of seeded and seedless grapevines. Mol Genet Genomics. 2015;290(3):825–46.
Article
CAS
PubMed
Google Scholar
Xiong H, Wu J, Chen J. K-means clustering versus validation measures: a data-distribution perspective. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions. 2009;39(2):318–31.
Article
Google Scholar
Derckel JP, Audran JC, Haye B, Lambert B, Legendre L. Characterization, induction by wounding and salicylic acid, and activity against Botrytis cinerea of chitinases and β-1, 3-glucanases of ripening grape berries. Physiol Plant. 1998;104(1):56–64.
Article
CAS
Google Scholar
Fechter I, Hausmann L, Zyprian E, Daum M, Holtgräwe D, Weisshaar B, Töpfer R. QTL analysis of flowering time and ripening traits suggests an impact of a genomic region on linkage group 1 in Vitis. Theor Appl Genet. 2014;127(9):1857–72.
Article
PubMed
PubMed Central
Google Scholar
Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS. Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol. 2008;8(1):38.
Article
PubMed
PubMed Central
Google Scholar
Fischer B, Salakhutdinov I, Akkurt M, Eibach R, Edwards K, Töpfer R, Zyprian E. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet. 2004;108(3):501–15.
Article
CAS
PubMed
Google Scholar
Grzeskowiak L, Costantini L, Lorenzi S, Grando MS. Candidate loci for phenology and fruitfulness contributing to the phenotypic variability observed in grapevine. Theor Appl Genet. 2013;126(11):2763–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duchêne E, Butterlin G, Dumas V, Merdinoglu D. Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor Appl Genet. 2012;124(4):623–35.
Article
PubMed
Google Scholar
Mejía N, Gebauer M, Muñoz L, Hewstone N, Muñoz C, Hinrichsen P. Identification of QTLs for seedlessness, berry size, and ripening date in a seedless x seedless table grape progeny. Am J Enol Vitic. 2007;58(4):499–507.
Google Scholar
Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331–41.
Article
CAS
PubMed
Google Scholar
Gilroy S, Suzuki N, Miller G, Choi W-G, Toyota M, Devireddy AR, Mittler R. A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 2014;19(10):623–30.
Article
CAS
PubMed
Google Scholar
Jimenez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeyen M, Mullineaux P. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta. 2002;214(5):751–8.
Article
CAS
PubMed
Google Scholar
Kumar V, Irfan M, Ghosh S, Chakraborty N, Chakraborty S, Datta A. Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma. 2016;253(2):581–94.
Article
CAS
PubMed
Google Scholar
Razzaq K, Khan AS, Malik AU, Shahid M. Ripening period influences fruit softening and antioxidative system of ‘Samar Bahisht Chaunsa’mango. Sci Hortic. 2013;160:108–14.
Article
CAS
Google Scholar
Huang R, Xia R, Hu L, Lu Y, Wang M. Antioxidant activity and oxygen-scavenging system in orange pulp during fruit ripening and maturation. Sci Hortic. 2007;113(2):166–72.
Article
CAS
Google Scholar
Pilati S, Brazzale D, Guella G, Milli A, Ruberti C, Biasioli F, Zottini M, Moser C. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin. BMC Plant Biol. 2014;14(1):87.
Article
PubMed
PubMed Central
Google Scholar
Wu J, Xu Z, Zhang Y, Chai L, Yi H, Deng X. An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. J Exp Bot. 2014;65(6):1651–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mondal K, Sharma N, Malhotra SP, Dhawan K, Singh R. Antioxidant systems in ripening tomato fruits. Biologia Plantarum. 2004;48(1):49–53.
Article
CAS
Google Scholar
Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125(7):1241–52.
Article
CAS
PubMed
Google Scholar
Tian S, Qin G, Li B. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol Biol. 2013;82(6):593–602.
Article
CAS
PubMed
Google Scholar
Garcia-Mata C, Wang J, Gajdanowicz P, Gonzalez W, Hills A, Donald N, Riedelsberger J, Amtmann A, Dreyer I, Blatt MR. A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2. J Biol Chem. 2010;285(38):29286–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richards SL, Laohavisit A, Mortimer JC, Shabala L, Swarbreck SM, Shabala S, Davies JM. Annexin 1 regulates the H2O2-induced calcium signature in Arabidopsis thaliana roots. Plant J. 2014;77(1):136–45.
Article
CAS
PubMed
Google Scholar
Dreyer I, Uozumi N. Potassium channels in plant cells. FEBS J. 2011;278(22):4293–303.
Article
CAS
PubMed
Google Scholar
Qiao B, Zhang Q, Liu D, Wang H, Yin J, Wang R, He M, Cui M, Shang Z, Wang D, et al. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. J Exp Bot. 2015;66(19):5853–66.
Article
CAS
PubMed
Google Scholar
Zoccatelli G, Zenoni S, Savoi S, Dal Santo S, Tononi P, Zandonà V, Dal Cin A, Guantieri V, Pezzotti M, Tornielli G. Skin pectin metabolism during the postharvest dehydration of berries from three distinct grapevine cultivars. Aust J Grape Wine Res. 2013;19(2):171–9.
Article
CAS
Google Scholar
Moore JP, Fangel JU, Willats WG, Vivier MA. Pectic-β (1, 4)-galactan, extensin and arabinogalactan-protein epitopes differentiate ripening stages in wine and table grape cell walls. Ann Bot. 2014; doi:10.1093/aob/mcu053.
Ketsa S, Daengkanit T. Firmness and activities of polygalacturonase, pectinesterase, β-galactosidase and cellulase in ripening durian harvested at different stages of maturity. Sci Hortic. 1999;80(3):181–8.
Article
CAS
Google Scholar
Castillejo C, de la Fuente JI, Iannetta P, Botella MA, Valpuesta V. Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. J Exp Bot. 2004;55(398):909–18.
Article
CAS
PubMed
Google Scholar
Mittler R, Blumwald E. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell. 2015;27(1):64–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colas S, Afoufa-Bastien D, Jacquens L, Clement C, Baillieul F, Mazeyrat-Gourbeyre F, Monti-Dedieu L. Expression and in situ localization of two major PR Proteins of grapevine berries during development and after UV-C exposition. PLoS One. 2012;7(8):e43681.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monteiro S, Piçarra-Pereira MA, Loureiro VB, Teixeira AR, Ferreira RB. The diversity of pathogenesis-related proteins decreases during grape maturation. Phytochemistry. 2007;68(4):416–25.
Article
CAS
PubMed
Google Scholar
Pirona R, Eduardo I, Pacheco I, Linge CDS, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D. Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol. 2013;13(1):166.
Article
PubMed
PubMed Central
Google Scholar
Clendennen SK, May GD. Differential gene expression in ripening banana fruit. Plant Physiol. 1997;115(2):463–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goñi O, Sanchez-Ballesta MT, Merodio C, Escribano MI. Ripening-related defense proteins in Annona fruit. Postharvest Biol Tec. 2010;55(3):169–73.
Article
Google Scholar
Zeng J, Gao C, Deng G, Jiang B, Yi G, Peng X, Zhong Y, Zhou B, Liu K. Transcriptome analysis of fruit development of a citrus late-ripening mutant by microarray. Sci Hortic. 2012;134:32–9.
Article
CAS
Google Scholar
Spanudakis E, Jackson S. The role of microRNAs in the control of flowering time. J Exp Bot. 2014;65(2):365–80.
Article
CAS
PubMed
Google Scholar
Vincenzi S, Bierma J, Wickramasekara SI, Curioni A, Gazzola D, Bakalinsky AT. Characterization of a grape class IV chitinase. J Agric Food Chem. 2014;62(24):5660–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson SP, Jacobs AK, Dry IB. A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol. 1997;114(3):771–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giribaldi M, Perugini I, Sauvage F-X, Schubert A. Analysis of protein changes during grape berry ripening by 2-DE and MALDI-TOF. Proteomics. 2007;7(17):3154–70.
Article
CAS
PubMed
Google Scholar