Burns A, Iliffe S. Alzheimer’s disease. BMJ. 2009;338:b158.
Article
PubMed
Google Scholar
Lemkul JA, Bevan DR. The role of molecular simulations in the development of inhibitors of amyloid beta-peptide aggregation for the treatment of Alzheimer’s disease. ACS Chem Neurosci. 2012;3(11):845–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord. 2013;6(1):19–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonin-Guillaume S, Zekry D, Giacobini E, Gold G, Michel JP. The economical impact of dementia. Presse Med. 2005;34(1):35–41.
Article
PubMed
Google Scholar
Rafii MS, Aisen PS. Advances in Alzheimer’s disease drug development. BMC Med. 2015;13:62.
Article
PubMed
PubMed Central
Google Scholar
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet. 2011;377(9770):1019–31.
Article
PubMed
Google Scholar
Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med. 2015.
Chung SJ, Jung Y, Hong M, Kim MJ, You S, Kim YJ, Kim J, Song K. Alzheimer’s disease and Parkinson’s disease genome-wide association study top hits and risk of Parkinson’s disease in Korean population. Neurobiol Aging. 2013;34(11):2695. e2691–2697.
Article
PubMed
Google Scholar
Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322(5903):881–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furney SJ, Higgins DG, Ouzounis CA, Lopez-Bigas N. Structural and functional properties of genes involved in human cancer. BMC Genomics. 2006;7:3.
Article
PubMed
PubMed Central
Google Scholar
Li Y, Xu J, Ju H, Xiao Y, Chen H, Lv J, Shao T, Bai J, Zhang Y, Wang L, et al. A network-based, integrative approach to identify genes with aberrant co-methylation in colorectal cancer. Mol Biosyst. 2014;10(2):180–90.
Article
CAS
PubMed
Google Scholar
Ostlund G, Lindskog M, Sonnhammer EL. Network-based Identification of novel cancer genes. Mol Cell Proteomics. 2010;9(4):648–55.
Article
PubMed
Google Scholar
Liu W, Xie H. Predicting potential cancer genes by integrating network properties, sequence features and functional annotations. Sci China Life Sci. 2013;56(8):751–7.
Article
PubMed
Google Scholar
Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol. 2010;6(1), e1000641.
Article
PubMed
PubMed Central
Google Scholar
Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 2011;39(Database issue):D52–7.
Article
CAS
PubMed
Google Scholar
Brown KR, Jurisica I. Online predicted human interaction database. Bioinformatics. 2005;21(9):2076–82.
Article
CAS
PubMed
Google Scholar
von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258–61.
Article
Google Scholar
Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G. MINT: the Molecular INTeraction database. Nucleic Acids Res. 2007;35(Database issue):D572–4.
Article
CAS
PubMed
Google Scholar
Bader GD, Betel D, Hogue CW. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 2003;31(1):248–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, et al. IntAct: an open source molecular interaction database. Nucleic Acids Res. 2004;32(Database issue):D452–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2008;24(2):282–4.
Article
CAS
PubMed
Google Scholar
Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, et al. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 2004;32(Database issue):D115–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuo WL, Montag AG, Rosner MR. Insulin-degrading enzyme is differentially expressed and developmentally regulated in various rat tissues. Endocrinology. 1993;132(2):604–11.
CAS
PubMed
Google Scholar
Olson SA. EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite. Brief Bioinform. 2002;3(1):87–91.
Article
PubMed
Google Scholar
Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):3.
Article
Google Scholar
Priyadarsini RP, Valarmathi ML, Sivakumari S. Gain Ratio Based Feature Selection Method For Privacy Preservation. ICTACT J Soft Comput. 2011;01(04):2229–6956.
Google Scholar
Novakovic J. Using Information Gain Attribute Evaluation to Classify Sonar Targets. In: 17th Telecommunications forum TELFOR. Belgrade; 2009. http://2009.telfor.rs/files/radovi/10_60.pdf.
Novaković J, Strbac P, Bulatović D. Toward Optimal Feature Selection Using Ranking Methods And Classification Algorithms. Yugosl J Oper Res. 2011;21(2011):119–35.
Article
Google Scholar
Hall MA. Correlation-based Feature Selection for Machine Learning. Hamilton: The University of Waikato; 1999.
Google Scholar
Kira K, Rendell LA. A Practical Approach to Feature Selection. In: International Conference on Machine Learning. 1992: 249–56.
Bouckaert RR, Frank E, Hall MA, Holmes G, Pfahringer B, Reutemann P, Witten IH. WEKA—Experiences with a Java Open-Source Project. J Mach Learn Res. 2010;11:2533–41.
Google Scholar
Lê S, Josse J, Husson F. FactoMineR: An R Package for Multivariate Analysis. J Stat Softw. 2008;25(1):1–18.
Article
Google Scholar
Kuhn M. Building Predictive Models in R Using the caret Package. J Stat Softw. 2008;28(5):1–26.
Article
Google Scholar
Jamal S, Goyal S, Shanker A, Grover A. Checking the STEP-Associated Trafficking and Internalization of Glutamate Receptors for Reduced Cognitive Deficits: A Machine Learning Approach-Based Cheminformatics Study and Its Application for Drug Repurposing. PLoS One. 2015;10(6), e0129370.
Article
PubMed
PubMed Central
Google Scholar
Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers. Mach Learn. 1997;29:131–63.
Article
Google Scholar
Kohavi R. Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid. In: Han ES WJ, editor. Menlo Park: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, vol. 7. 1996; p. 202–07.
Jensen FV. An Introduction to Bayesian Networks, vol. 30. UCL Press; 1996.
Farid, DM, Harbi N, Rahman MZ. Combining Naive Bayes and Decision Tables for Adaptive Intrusion Detection. IJNSA. 2010;2(2):12-25.
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
Article
Google Scholar
Quinlan JR. C4.5: Programs for Machine Learning. 1993.
Gama J. Functional Trees. Mach Learn. 2004;55:219–50.
Article
Google Scholar
Atkeson CG, Moore AW, Schaal S. Locally Weighted Learning. Artif Intell Rev. 1997;11:11–73.
Article
Google Scholar
Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002;35(5–6):352–9.
Article
PubMed
Google Scholar
Corinna Cortes VV. Support-Vector Networks. Mach Learn. 1995;20(3):273–97.
Google Scholar
Wahi D, Jamal S, Goyal S, Singh A, Jain R, Rana P, Grover A. Cheminformatics models based on machine learning approaches for design of USP1/UAF1 abrogators as anticancer agents. Syst Synth Biol. 2015;9(1–2):33–43.
Article
PubMed
PubMed Central
Google Scholar
Jain R, Jamal S, Goyal S, Wahi D, Singh A, Grover A. Resisting the Resistance in Cancer: Cheminformatics Studies on Short- Path Base Excision Repair Pathway Antagonists Using Supervised Learning Approaches. Comb Chem High Throughput Screen. 2015;18(9):881–91.
Article
CAS
PubMed
Google Scholar
Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, et al. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 2011;39(Database issue):D1035–41.
Article
CAS
PubMed
Google Scholar
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–49.
Article
CAS
PubMed
Google Scholar
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47(7):1750–9.
Article
CAS
PubMed
Google Scholar
Schrodinger. Schrodinger Software Suite. New York: Schrodinger LLC; 2011.
Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, et al. The Protein Data Bank. Acta Crystallogr D Biol Crystallogr. 2002;58(Pt 6 No 1):899–907.
Article
PubMed
Google Scholar
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27(3):221–34.
Article
PubMed
Google Scholar
Nagpal N, Goyal S, Wahi D, Jain R, Jamal S, Singh A, Rana P, Grover A. Molecular principles behind Boceprevir resistance due to mutations in hepatitis C NS3/4A protease. Gene. 2015;570(1):115–21.
Article
CAS
PubMed
Google Scholar
Gupta A, Jamal S, Goyal S, Jain R, Wahi D, Grover A. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease. BMC Bioinformatics. 2015;16 Suppl 19:S10.
Article
PubMed
PubMed Central
Google Scholar
Schrodinger, LigPrep. New York: 23 Schrodinger LLC; 2009.
Sinha S, Tyagi C, Goyal S, Jamal S, Somvanshi P, Grover A. Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia. J Biomol Struct Dyn. 2015; 34(10):1-39.
Desmond. Schrödinger Desmond Molecular Dynamics System in Maestro-Desmond Interoperability Tools. 34 ed. New York; 2013.
Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides†. J Phys Chem B. 2001;105(28):6474–87.
Article
CAS
Google Scholar
Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J Am Chem Soc. 1996;118(45):11225–36.
Article
CAS
Google Scholar
Prime. New York: Schrodinger LLC; 2011.
Xu J, Li Y. Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics. 2006;22(22):2800–5.
Article
CAS
PubMed
Google Scholar
Tu Z, Wang L, Xu M, Zhou X, Chen T, Sun F. Further understanding human disease genes by comparing with housekeeping genes and other genes. BMC Genomics. 2006;7:31.
Article
PubMed
PubMed Central
Google Scholar
Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet. 2006;38(3):285–93.
Article
CAS
PubMed
Google Scholar
Wang X, Zhang D. Alzheimer’s disease related-genes and apoptosis. Sheng Li Ke Xue Jin Zhan. 2001;32(4):307–11.
CAS
PubMed
Google Scholar
Lauss M, Kriegner A, Vierlinger K, Noehammer C. Characterization of the drugged human genome. Pharmacogenomics. 2007;8(8):1063–73.
Article
CAS
PubMed
Google Scholar
Bakheet TM, Doig AJ. Properties and identification of human protein drug targets. Bioinformatics. 2009;25(4):451–7.
Article
CAS
PubMed
Google Scholar
Uemura K, Lill CM, Banks M, Asada M, Aoyagi N, Ando K, Kubota M, Kihara T, Nishimoto T, Sugimoto H, et al. N-cadherin-based adhesion enhances Abeta release and decreases Abeta42/40 ratio. J Neurochem. 2009;108(2):350–60.
Article
CAS
PubMed
Google Scholar
Parisiadou L, Fassa A, Fotinopoulou A, Bethani I, Efthimiopoulos S. Presenilin 1 and cadherins: stabilization of cell-cell adhesion and proteolysis-dependent regulation of transcription. Neurodegener Dis. 2004;1(4–5):184–91.
Article
CAS
PubMed
Google Scholar
Baki L, Marambaud P, Efthimiopoulos S, Georgakopoulos A, Wen P, Cui W, Shioi J, Koo E, Ozawa M, Friedrich Jr VL, et al. Presenilin-1 binds cytoplasmic epithelial cadherin, inhibits cadherin/p120 association, and regulates stability and function of the cadherin/catenin adhesion complex. Proc Natl Acad Sci U S A. 2001;98(5):2381–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asada-Utsugi M, Uemura K, Noda Y, Kuzuya A, Maesako M, Ando K, Kubota M, Watanabe K, Takahashi M, Kihara T, et al. N-cadherin enhances APP dimerization at the extracellular domain and modulates Abeta production. J Neurochem. 2011;119(2):354–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caserta TM, Smith AN, Gultice AD, Reedy MA, Brown TL. Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis. 2003;8(4):345–52.
Article
CAS
PubMed
Google Scholar
Choi Y, Kim HS, Shin KY, Kim EM, Kim M, Park CH, Jeong YH, Yoo J, Lee JP, Chang KA, et al. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacology. 2007;32(11):2393–404.
Article
CAS
PubMed
Google Scholar
Wei W, Norton DD, Wang X, Kusiak JW. Abeta 17–42 in Alzheimer’s disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain. 2002;125(Pt 9):2036–43.
Article
PubMed
Google Scholar
Nicolas CS, Amici M, Bortolotto ZA, Doherty A, Csaba Z, Fafouri A, Dournaud P, Gressens P, Collingridge GL, Peineau S. The role of JAK-STAT signaling within the CNS. JAKSTAT. 2013;2(1), e22925.
PubMed
PubMed Central
Google Scholar
Chiba T, Yamada M, Aiso S. Targeting the JAK2/STAT3 axis in Alzheimer’s disease. Expert Opin Ther Targets. 2009;13(10):1155–67.
Article
CAS
PubMed
Google Scholar
Chiba T, Yamada M, Sasabe J, Terashita K, Shimoda M, Matsuoka M, Aiso S. Amyloid-beta causes memory impairment by disturbing the JAK2/STAT3 axis in hippocampal neurons. Mol Psychiatry. 2009;14(2):206–22.
Article
CAS
PubMed
Google Scholar
Marwarha G, Prasanthi JR, Schommer J, Dasari B, Ghribi O. Molecular interplay between leptin, insulin-like growth factor-1, and beta-amyloid in organotypic slices from rabbit hippocampus. Mol Neurodegener. 2011;6(1):41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Natarajan C, Sriram S, Muthian G, Bright JJ. Signaling through JAK2-STAT5 pathway is essential for IL-3-induced activation of microglia. Glia. 2004;45(2):188–96.
Article
PubMed
Google Scholar
Kaltschmidt B, Uherek M, Volk B, Baeuerle PA, Kaltschmidt C. Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci U S A. 1997;94(6):2642–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oka S, Kamata H, Kamata K, Yagisawa H, Hirata H. N-acetylcysteine suppresses TNF-induced NF-kappaB activation through inhibition of IkappaB kinases. FEBS Lett. 2000;472(2–3):196–202.
Article
CAS
PubMed
Google Scholar
Frandsen A, Schousboe A. Excitatory amino acid-mediated cytotoxicity and calcium homeostasis in cultured neurons. J Neurochem. 1993;60(4):1202–11.
Article
CAS
PubMed
Google Scholar
Oliveira TG, Di Paolo G. Phospholipase D in brain function and Alzheimer’s disease. Biochim Biophys Acta. 2010;1801(8):799–805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keating DJ, Chen C, Pritchard MA. Alzheimer’s disease and endocytic dysfunction: clues from the Down syndrome-related proteins, DSCR1 and ITSN1. Ageing Res Rev. 2006;5(4):388–401.
Article
CAS
PubMed
Google Scholar
Sengar AS, Wang W, Bishay J, Cohen S, Egan SE. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J. 1999;18(5):1159–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubo T, Yamaguchi A, Iwata N, Yamashita T. The therapeutic effects of Rho-ROCK inhibitors on CNS disorders. Ther Clin Risk Manag. 2008;4(3):605–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Q, Longo FM, Zhou H, Massa SM, Chen YH. Signaling through Rho GTPase pathway as viable drug target. Curr Med Chem. 2009;16(11):1355–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112–9.
Article
CAS
PubMed
Google Scholar
Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;325(5938):332–6.
Article
CAS
PubMed
Google Scholar
Lau P, de Strooper B. Dysregulated microRNAs in neurodegenerative disorders. Semin Cell Dev Biol. 2010;21(7):768–73.
Article
CAS
PubMed
Google Scholar
Zovoilis A, Agbemenyah HY, Agis-Balboa RC, Stilling RM, Edbauer D, Rao P, Farinelli L, Delalle I, Schmitt A, Falkai P, et al. microRNA-34c is a novel target to treat dementias. EMBO J. 2011;30(20):4299–308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monaco 3rd EA. Recent evidence regarding a role for Cdk5 dysregulation in Alzheimer’s disease. Curr Alzheimer Res. 2004;1(1):33–8.
Article
CAS
PubMed
Google Scholar
Absalon S, Kochanek DM, Raghavan V, Krichevsky AM. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci. 2013;33(37):14645–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puig B, Ferrer I, Luduena RF, Avila J. BetaII-tubulin and phospho-tau aggregates in Alzheimer’s disease and Pick’s disease. J Alzheimers Dis. 2005;7(3):213–20. discussion 255–262.
CAS
PubMed
Google Scholar
Caramelli P, Nitrini R, Maranhao R, Lourenco AC, Damasceno MC, Vinagre C, Caramelli B. Increased apolipoprotein B serum concentration in Alzheimer’s disease. Acta Neurol Scand. 1999;100(1):61–3.
Article
CAS
PubMed
Google Scholar
Kelly BL, Vassar R, Ferreira A. Beta-amyloid-induced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease. J Biol Chem. 2005;280(36):31746–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Kurup P, Nairn AC, Lombroso PJ. Striatal-enriched protein tyrosine phosphatase in Alzheimer’s disease. Adv Pharmacol. 2012;64:303–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Assaraf MI, Diaz Z, Liberman A, Miller Jr WH, Arvanitakis Z, Li Y, Bennett DA, Schipper HM. Brain erythropoietin receptor expression in Alzheimer disease and mild cognitive impairment. J Neuropathol Exp Neurol. 2007;66(5):389–98.
Article
CAS
PubMed
Google Scholar
Grilli M, Ribola M, Alberici A, Valerio A, Memo M, Spano P. Amyloid Precursor Protein (APP) Gene Expression is Controlled by a NFkB/Rel Related Protein, vol. 44. NewYork: Springer US; 1995.
Bublil EM, Yarden Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol. 2007;19(2):124–34.
Article
CAS
PubMed
Google Scholar
Nygaard HB, van Dyck CH, Strittmatter SM. Fyn kinase inhibition as a novel therapy for Alzheimer’s disease. Alzheimers Res Ther. 2014;6(1):8.
Article
PubMed
PubMed Central
Google Scholar
Rickle A, Bogdanovic N, Volkman I, Winblad B, Ravid R, Cowburn RF. Akt activity in Alzheimer’s disease and other neurodegenerative disorders. Neuroreport. 2004;15(6):955–9.
Article
CAS
PubMed
Google Scholar