Reuter D, Cartwright B, Judson G, McFarlane J, Maschmedt D, Robinson J. Trace elements in South Australian agriculture. Department of Agriculture South Australia, Technical Report no 139. 1988.
Welch RM, Allaway WH, House WA, Kubota J, Luxmoore R. Geographic distribution of trace element problems. Micronutrients in agriculture. 1991 (Ed. 2). p. 31-57.
Hebbern CA, Pedas P, Schjoerring JK, Knudsen L, Husted S. Genotypic differences in manganese efficiency: field experiments with␣winter barley (Hordeum vulgare L.). Plant and Soil. 2005;272(1-2):233–44.
Article
CAS
Google Scholar
Yang XE, Chen WR, Feng Y. Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environ Geochem Health. 2007;29(5):413–28.
Article
CAS
PubMed
Google Scholar
Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F. Chapter 7 - Function of Nutrients: Micronutrients. In: Marschner P, editor. Marschner's Mineral Nutrition of Higher Plants (Third Edition). San Diego: Academic; 2012. p. 191–248.
Chapter
Google Scholar
Schmidt SB, Pedas P, Laursen KH, Schjoerring JK, Husted S. Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements. Plant and Soil. 2013;372(1-2):417–29.
Article
CAS
Google Scholar
Burnell JN. The biochemistry of manganese in plants. In: "Manganese in soils and plants" (eds. Graham, RD, Hannam, RJ and Uren, NC). Springer; 1988. p. 125–37.
Rengel Z, Graham RD, Pedler JF. Time-Course of Biosynthesis of Phenolics and Lignin in Roots of Wheat Genotypes Differing in Manganese Efficiency and Resistance to Take-All Fungus. Ann Bot-London. 1994;74(5):471–7.
Article
CAS
Google Scholar
Brennan RF. The Role of Manganese and Nitrogen Nutrition in the Susceptibility of Wheat Plants to Take-All in Western-Australia. Fertilizer Res. 1992;31(1):35–41.
Article
CAS
Google Scholar
Stoltz E, Wallenhammar AC. Manganese application increases winter hardiness in barley. Field Crop Res. 2014;164:148–53.
Article
Google Scholar
White PJ, Greenwood DJ. Properties and management of cationic elements for crop growth. In: Soil Conditions and Plant Growth. Blackwell Publishing Ltd; 2013. p. 160–94
Ascher-Ellis J, Graham RD, Hollamby G, Paull JG, Davies P, Huang C, et al. Micronutrients. 2001.
Google Scholar
Collins NC, Tardieu F, Tuberosa R. Quantitative trait loci and crop performance under abiotic stress: Where do we stand? Plant Physiol. 2008;147(2):469–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rengel Z. Genotypic Differences in Micronutrient Use Efficiency in Crops. Commun Soil Sci Plant Anal. 2007;32(7-8):1163–86.
Article
Google Scholar
Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, et al. Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol. 2011;156(3):1202–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, et al. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature. 2012;488(7412):535–9.
Article
CAS
PubMed
Google Scholar
Graham R. Genotypic Differences in Tolerance to Manganese Deficiency. In: Graham R, Hannam R, Uren N, editors. Manganese in Soils and Plants, vol. 33. Netherlands: Springer; 1988. p. 261–76.
Chapter
Google Scholar
Pedas P, Hebbern CA, Schjoerring JK, Holm PE, Husted S. Differential capacity for high-affinity manganese uptake contributes to differences between barley genotypes in tolerance to low manganese availability. Plant Physiol. 2005;139(3):1411–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S. Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol. 2008;148(1):455–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Socha AL, Guerinot ML. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Front Plant Sci. 2014;5:106.
Article
PubMed
PubMed Central
Google Scholar
Husted S, Laursen KH, Hebbern CA, Schmidt SB, Pedas P, Haldrup A, et al. Manganese deficiency leads to genotype-specific changes in fluorescence induction kinetics and state transitions. Plant Physiol. 2009;150(2):825–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt SB, Persson DP, Powikrowska M, Frydenvang J, Schjoerring JK, Jensen PE, et al. Metal binding in photosystem II super-and subcomplexes from barley thylakoids. Plant Physiol. 2015;168(4):1490–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
George TS, French AS, Brown LK, Karley AJ, White PJ, Ramsay L, et al. Genotypic variation in the ability of landraces and commercial cereal varieties to avoid manganese deficiency in soils with limited manganese availability: is there a role for root‐exuded phytases? Physiologia plantarum. 2014;151(3):243-256.
White AR, Xin Y, Pezeshk V. Xyloglucan glucosyltransferase in Golgi membranes from Pisum sativum (pea). Biochem J. 1993;294(Pt 1):231–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nunan KJ, Scheller HV. Solubilization of an arabinan arabinosyltransferase activity from mung bean hypocotyls. Plant Physiol. 2003;132(1):331–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Requena L, Bornemann S. Barley (Hordeum vulgare) oxalate oxidase is a manganese-containing enzyme. Biochem J. 1999;343(1):185–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowler C, Slooten L, Vandenbranden S, Derycke R, Botterman J, Sybesma C, et al. Manganese Superoxide-Dismutase Can Reduce Cellular-Damage Mediated by Oxygen Radicals in Transgenic Plants. Embo J. 1991;10(7):1723–32.
CAS
PubMed
PubMed Central
Google Scholar
Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331–41.
Article
CAS
PubMed
Google Scholar
Govindjee G. Chlorophyll a fluorescence: a bit of basics and history. Chlorophyll a fluorescence: a signature of photosynthesis Springer, Dordrecht. 2004:1-42
Hall D, Tegstrom C, Ingvarsson PK. Using association mapping to dissect the genetic basis of complex traits in plants. Brief Funct Genomics. 2010;9(2):157–65.
Article
CAS
PubMed
Google Scholar
Rafalski JA. Association genetics in crop improvement. Curr Opin Plant Biol. 2010;13(2):174–80.
Article
CAS
PubMed
Google Scholar
Wang J, McClean PE, Lee R, Goos RJ, Helms T. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Gen. 2008;116(6):777–87.
Article
CAS
Google Scholar
Lonergan PF, Pallotta MA, Lorimer M, Paull JG, Barker SJ, Graham RD. Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytol. 2009;184(1):168–79.
Article
CAS
PubMed
Google Scholar
Genc Y, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, et al. Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant and Soil. 2008;314(1-2):49–66.
Article
Google Scholar
Waters BM, Grusak MA. Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytol. 2008;179(4):1033–47.
Article
CAS
PubMed
Google Scholar
McCarthy K, Longnecker N, Sparrow D, Graham R: Inheritance of manganese efficiency in barley (Hordeum vulgare L.). In. International Symposium on Manganese in Soils and Plants: Contributed Papers MJ Webb, RO Nable, RD Graham, and RJ Hannam (eds) Manganese Symposium, Adelaide: 1988; 1988: 121-122
Pallotta MA, Graham RD, Langridge P, Sparrow DHB, Barker SJ. RFLP mapping of manganese efficiency in barley. Theor Appl Genet. 2000;101(7):1100–8.
Article
CAS
Google Scholar
Pallotta MA, Asayama S, Reinheimer JM, Davies PA, Barr AR, Jefferies SP, et al. Mapping and QTL analysis of the barley population Amagi Nijo x WI2585. Aust J Agr Res. 2003;54(11-12):1141–4.
Article
CAS
Google Scholar
FAO. FAOSTAT. FAO: Rome; 2014.
Google Scholar
Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L, et al. Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur. 2011;3(2):141–78.
Article
Google Scholar
Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, et al. Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci U S A. 2009;106(35):14908–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
IBGSC. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491(7426):711–6.
Google Scholar
Munoz-Amatriain M, Cuesta-Marcos A, Hayes PM, Muehlbauer GJ. Barley genetic variation: implications for crop improvement. Brief Funct Genomics. 2014;13(4):341–50.
Article
PubMed
Google Scholar
Rizza F, Pagani D, Stanca AM, Cattivelli L. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breeding. 2001;120(5):389–96.
Article
Google Scholar
Strasser R, Tsimilli-Michael M, Srivastava A. Analysis of the Chlorophyll a Fluorescence Transient. In: Govindjee PG, editor. Chlorophyll a Fluorescence, vol. 19. Netherlands: Springer; 2004. p. 321–62.
Chapter
Google Scholar
Baker NR, Rosenqvist E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot. 2004;55(403):1607–21.
Article
CAS
PubMed
Google Scholar
R Core Development Team. R: A Language and Environment for Statistical Computing. 2014.
Google Scholar
Gilmour AR, Thompson R, Cullis BR. Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models. Biometrics. 1995;51(4):1440–50.
Article
Google Scholar
Butler DG, Cullis BR, Gilmour AR, Gogel BJ. ASReml-R reference manual, release 3. In: Brisbane: Queensland Department of Primary Industries and Fisheries. 2009.
Google Scholar
Piepho HP, Möhring J, Melchinger AE, Büchse A. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica. 2007;161(1-2):209–28.
Article
Google Scholar
Smith AB, Cullis BR, Thompson R. The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J Agr Sci. 2005;143(06):449–62.
Article
Google Scholar
Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, et al. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet. 2012;44(12):1388–92.
Article
CAS
PubMed
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.
CAS
PubMed
PubMed Central
Google Scholar
Besnier F, Glover KA. ParallelStructure: a R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. Plos One. 2013;8(7):e70651.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–20.
Article
CAS
PubMed
Google Scholar
Earl DA. vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2011;4(2):359–61.
Article
Google Scholar
Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23(14):1801–6.
Article
CAS
PubMed
Google Scholar
Rosenberg NA. distruct: a program for the graphical display of population structure. Mol Ecol Notes. 2003;4(1):137–8.
Article
Google Scholar
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28(18):2397–9.
Article
CAS
PubMed
Google Scholar
Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38(2):203–8.
Article
CAS
PubMed
Google Scholar
Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, et al. Efficient control of population structure in model organism association mapping. Genetics. 2008;178(3):1709–23.
Article
PubMed
PubMed Central
Google Scholar
Loiselle BA, Sork VL, Nason J, Graham C. Spatial Genetic-Structure of a Tropical Understory Shrub, Psychotria Officinalis (Rubiaceae). Am J Bot. 1995;82(11):1420–5.
Article
Google Scholar
Cantalapiedra CP, Boudiar R, Casas AM, Igartua E, Contreras-Moreira B. BARLEYMAP: physical and genetic mapping of nucleotide sequences and annotation of surrounding loci in barley. Mol Breeding. 2015;35(1):1–11.
Article
CAS
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.
Article
CAS
PubMed
Google Scholar
Breseghello F, Sorrells ME. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics. 2006;172(2):1165–77.
Article
PubMed
PubMed Central
Google Scholar
Mundus S, Lombi E, Holm PE, Zhang H, Husted S. Assessing the plant availability of manganese in soils using Diffusive Gradients in Thin films (DGT). Geoderma. 2012;183:92–9.
Article
Google Scholar
Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, et al. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 2009;10:582.
Article
PubMed
PubMed Central
Google Scholar
Mackay TF. The genetic architecture of quantitative traits. Annu Rev Genet. 2001;35(1):303–39.
Article
CAS
PubMed
Google Scholar
Gutiérrez L, Cuesta-Marcos A, Castro AJ, von Zitzewitz J, Schmitt M, Hayes PM. Association Mapping of Malting Quality Quantitative Trait Loci in Winter Barley: Positive Signals from Small Germplasm Arrays. Plant Genome J. 2011;4(3):256.
Article
Google Scholar
Kuchel H, Williams K, Langridge P, Eagles HA, Jefferies SP. Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theor Appl Gen. 2007;115(7):1015–27.
Article
CAS
Google Scholar
Mathews KL, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R, et al. Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Gen. 2008;117(7):1077–91.
Article
Google Scholar
MacMillan K, Emrich K, Piepho HP, Mullins CE, Price AH. Assessing the importance of genotype x environment interaction for root traits in rice using a mapping population II: conventional QTL analysis. Theor Appl Gen. 2006;113(5):953–64.
Article
CAS
Google Scholar
Andersson U, Heddad M, Adamska I. Light stress-induced one-helix protein of the chlorophyll a/b-binding family associated with photosystem I. Plant Physiol. 2003;132(2):811–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro EM, et al. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell. 2014;26(9):3646–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yakushevska AE, Jensen PE, Keegstra W, van Roon H, Scheller HV, Boekema EJ, et al. Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana. Eur J Biochem. 2001;268(23):6020–8.
Article
CAS
PubMed
Google Scholar
Jensen PE, Bassi R, Boekema EJ, Dekker JP, Jansson S, Leister D, et al. Structure, function and regulation of plant photosystem I. Biochim Biophys Acta. 2007;1767(5):335–52.
Article
CAS
PubMed
Google Scholar
Dekker JP, Boekema EJ. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta. 2005;1706(1-2):12–39.
Article
CAS
PubMed
Google Scholar
Fromme P, Grotjohann I. Structure of Photosystems I and II. In: Schäfer G, Penefsky H, editors. Bioenergetics, vol. 45. Berlin Heidelberg: Springer; 2008. p. 33–72.
Chapter
Google Scholar
Salomon E, Keren N. Manganese limitation induces changes in the activity and in the organization of photosynthetic complexes in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol. 2011;155(1):571–9.
Article
CAS
PubMed
Google Scholar
Nickelsen J, Rengstl B. Photosystem II assembly: from cyanobacteria to plants. Annu Rev Plant Biol. 2013;64(1):609–35.
Article
CAS
PubMed
Google Scholar
Dobakova M, Sobotka R, Tichy M, Komenda J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 2009;149(2):1076–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi LX, Hall M, Funk C, Schroder WP. Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. Biochim Biophys Acta. 2012;1817(1):13–25.
Article
CAS
PubMed
Google Scholar
Mabbitt PD, Wilbanks SM, Eaton-Rye JJ. Structure and function of the hydrophilic Photosystem II assembly proteins: Psb27, Psb28 and Ycf48. Plant Physiol Biochem. 2014;81:96–107.
Article
CAS
PubMed
Google Scholar
Sakata S, Mizusawa N, Kubota-Kawai H, Sakurai I, Wada H. Psb28 is involved in recovery of photosystem II at high temperature in Synechocystis sp. PCC 6803. Biochim Biophys Acta. 2013;1827(1):50–9.
Article
CAS
PubMed
Google Scholar
Pagliano C, Saracco G, Barber J. Structural, functional and auxiliary proteins of photosystem II. Photosynth Res. 2013;116(2-3):167–88.
Article
CAS
PubMed
Google Scholar
Bricker TM, Roose JL, Fagerlund RD, Frankel LK, Eaton-Rye JJ. The extrinsic proteins of Photosystem II. Biochim Biophys Acta. 2012;1817(1):121–42.
Article
CAS
PubMed
Google Scholar
Bondarava N, Un S, Krieger-Liszkay A. Manganese binding to the 23 kDa extrinsic protein of Photosystem II. Biochim Biophys Acta. 2007;1767(6):583–8.
Article
CAS
PubMed
Google Scholar
Shitov AV, Pobeguts OV, Smolova TN, Allakhverdiev SI, Klimov VV. Manganese-dependent carboanhydrase activity of photosystem II proteins. Biochemistry Biokhimiia. 2009;74(5):509–17.
Article
CAS
PubMed
Google Scholar
Kakiuchi S, Uno C, Ido K, Nishimura T, Noguchi T, Ifuku K, et al. The PsbQ protein stabilizes the functional binding of the PsbP protein to photosystem II in higher plants. Biochim Biophys Acta. 2012;1817(8):1346–51.
Article
CAS
PubMed
Google Scholar
Yi X, Hargett SR, Frankel LK, Bricker TM. The PsbQ protein is required in Arabidopsis for photosystem II assembly/stability and photoautotrophy under low light conditions. J Biol Chem. 2006;281(36):26260–7.
Article
CAS
PubMed
Google Scholar
Ploscher M, Granvogl B, Zoryan M, Reisinger V, Eichacker LA. Mass spectrometric characterization of membrane integral low molecular weight proteins from photosystem II in barley etioplasts. Proteomics. 2009;9(3):625–35.
Article
PubMed
Google Scholar
Krech K, Fu HY, Thiele W, Ruf S, Schottler MA, Bock R. Reverse genetics in complex multigene operons by co-transformation of the plastid genome and its application to the open reading frame previously designated psbN. Plant J. 2013;75(6):1062–74.
Article
CAS
PubMed
Google Scholar
Torabi S, Umate P, Manavski N, Plochinger M, Kleinknecht L, Bogireddi H, et al. PsbN is required for assembly of the photosystem II reaction center in Nicotiana tabacum. Plant Cell. 2014;26(3):1183–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Cerdan JG, Kovacs L, Toth T, Kereiche S, Aseeva E, Boekema EJ, et al. The PsbW protein stabilizes the supramolecular organization of photosystem II in higher plants. Plant J. 2011;65(3):368–81.
Article
CAS
PubMed
Google Scholar
Kerk D, Bulgrien J, Smith DW, Barsam B, Veretnik S, Gribskov M. The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol. 2002;129(2):908–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci. 2004;9(5):236–43.
Article
CAS
PubMed
Google Scholar
Takezawa D. Characterization of a novel plant PP2C-like protein Ser/Thr phosphatase as a calmodulin-binding protein. J Biol Chem. 2003;278(39):38076–83.
Article
CAS
PubMed
Google Scholar
Dunwell JM, Gibbings JG, Mahmood T, Naqvi SMS. Germin and germin-like proteins: Evolution, structure, and function. Crit Rev Plant Sci. 2008;27(5):342–75.
Article
CAS
Google Scholar
Davidson RM, Reeves PA, Manosalva PM, Leach JE. Germins: A diverse protein family important for crop improvement. Plant Sci. 2009;177(6):499–510.
Article
CAS
Google Scholar
Woo EJ, Dunwell JM, Goodenough PW, Marvier AC, Pickersgill RW. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat Struct Biol. 2000;7(11):1036–40.
Article
CAS
PubMed
Google Scholar
Opaleye O, Rose RS, Whittaker MM, Woo EJ, Whittaker JW, Pickersgill RW. Structural and spectroscopic studies shed light on the mechanism of oxalate oxidase. J Biol Chem. 2006;281(10):6428–33.
Article
CAS
PubMed
Google Scholar
Druka A, Kudrna D, Kannangara CG, von Wettstein D, Kleinhofs A. Physical and genetic mapping of barley (Hordeum vulgare) germin-like cDNAs. Proc Natl Acad Sci U S A. 2002;99(2):850–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Federico ML, Iniguez-Luy FL, Skadsen RW, Kaeppler HF. Spatial and temporal divergence of expression in duplicated barley germin-like protein-encoding genes. Genetics. 2006;174(1):179–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zimmermann G, Baumlein H, Mock HP, Himmelbach A, Schweizer P. The multigene family encoding germin-like proteins of barley. Regulation and function in Basal host resistance. Plant Physiol. 2006;142(1):181–92.
Article
CAS
PubMed
PubMed Central
Google Scholar