Tuberosa R, Salvi S. Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci. 2006;11(8):405–12.
Article
CAS
PubMed
Google Scholar
Bruce WB, Edmeades GO, Barker TC. Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot. 2002;53(366):13–25.
Article
CAS
PubMed
Google Scholar
Bolanos J, Edmeades GO. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res. 1996;48(1):65–80.
Article
Google Scholar
Frova C, Krajewski P, di Fonzo N, Villa M, Sari-Gorla M. Genetic analysis of drought tolerance in maize by molecular markers I. Yield components. Theor Appl Genet. 1999;99(1–2):280–8.
Article
Google Scholar
Setter TL. Analysis of constituents for phenotyping drought tolerance in crop improvement. Front Physiol. 2012;3:180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuberosa R. Phenotyping for drought tolerance of crops in the genomics era. Front Physiol. 2012;3:347.
Article
PubMed
PubMed Central
Google Scholar
Ziyomo C, Bernardo R. Drought tolerance in maize: indirect selection through secondary traits versus genome wide selection. Crop Sci. 2013;53(4):1269–75.
Article
Google Scholar
Messina CD, Podlich D, Dong ZS, Samples M, Cooper M. Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance. J Exp Bot. 2011;62(3):855–68.
Article
CAS
PubMed
Google Scholar
Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, GonzalezdeLeon D. Identification of quantitative trait loci under drought conditions in tropical maize. II. Flowering parameters and the anthesis-silking interval. Theor Appl Genet. 1996;92(7):905–14.
Article
CAS
PubMed
Google Scholar
Sari-Gorla M, Krajewski P, Di Fonzo N, Villa M, Frova C. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor Appl Genet. 1999;99(1–2):289–95.
Article
Google Scholar
Almeida GD, Makumbi D, Magorokosho C, Nair S, Borem A, Ribaut JM, Banziger M, Prasanna BM, Crossa J, Babu R. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet. 2013;126(3):583–600.
Article
CAS
PubMed
Google Scholar
Almeida GD, Nair S, Borem A, Cairns J, Trachsel S, Ribaut JM, Banziger M, Prasanna BM, Crossa J, Babu R. Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Mol Breed. 2014;34(2):701–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao ZF, Li XH, Liu XL, Xie CX, Li MS, Zhang DG, Zhang SH. Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica. 2010;174(2):165–77.
Article
Google Scholar
Li W, Liu Z, Shi Y, Song Y, Wang T, Xu C, Li Y. Detection of consensus genomic region of QTLs relevant to drought tolerance in maize by QTL Meta-analysis and bioinformatics approach. Acta Agron Sin. 2010;36:1457–67.
Article
CAS
Google Scholar
Semagn K, Beyene Y, Warburton ML, Tarekegne A, Mugo S, Meisel B, Sehabiague P, Prasanna BM. Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genomics. 2013;14.
Lu YL, Zhang SH, Shah T, Xie CX, Hao ZF, Li XH, Farkhari M, Ribaut JM, Cao MJ, Rong TZ, et al. Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci U S A. 2010;107(45):19585–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue YD, Warburton ML, Sawkins M, Zhang XH, Setter T, Xu YB, Grudloyma P, Gethi J, Ribaut JM, Li WC, et al. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor Appl Genet. 2013;126(10):2587–96.
Article
CAS
PubMed
Google Scholar
Thirunavukkarasu N, Hossain F, Arora K, Sharma R, Shiriga K, Mittal S, Mohan S, Namratha PM, Dogga S, Rani TS, et al. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping. BMC Genomics. 2014;15:1182.
Article
CAS
PubMed
PubMed Central
Google Scholar
McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, et al. Genetic properties of the maize nested association mapping population. Science. 2009;325(5941):737–40.
Article
CAS
PubMed
Google Scholar
Li C, Li Y, Bradbury PJ, Wu X, Shi Y, Song Y, Zhang D, Rodgers-Melnick E, Buckler ES, Zhang Z, et al. Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize. BMC Biol. 2015;13:78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, et al. The genetic architecture of maize flowering time. Science. 2009;325(5941):714–8.
Article
CAS
PubMed
Google Scholar
Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet. 2011;43(2):159–62.
Article
CAS
PubMed
Google Scholar
Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES, et al. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet. 2011;7(11), e1002383.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol. 2012;158(2):824–34.
Article
CAS
PubMed
Google Scholar
Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, Gardner CA, McMullen MD, Holland JB, Bradbury PJ, et al. The genetic architecture of maize height. Genetics. 2014;196(4):1337–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM, Buckler ES. The genetic architecture of maize stalk strength. PLoS One. 2013;8(6), e67066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vilela B, Moreno-Cortes A, Rabissi A, Leung J, Pages M, Lumbreras V. The maize OST1 kinase homolog phosphorylates and regulates the maize SNAC1-type transcription factor. PLoS One. 2013;8(2), e58105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell. 2004;16(5):1220–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osakabe Y, Osakabe K, Shinozaki K, Tran LS. Response of plants to water stress. Front Plant Sci. 2014;5:86.
Article
PubMed
PubMed Central
Google Scholar
Crossa J, de Los Campos G, Perez P, Gianola D, Burgueno J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan JB, et al. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics. 2010;186(2):713–U406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo Z, Tucker DM, Lu J, Kishore V, Gay G. Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor Appl Genet. 2012;124(2):261–75.
Article
PubMed
Google Scholar
Riedelsheimer C, Endelman JB, Stange M, Sorrells ME, Jannink JL, Melchinger AE. Genomic predictability of interconnected biparental maize populations. Genetics. 2013;194(2):493–503.
Article
PubMed
PubMed Central
Google Scholar
Rincent R, Laloe D, Nicolas S, Altmann T, Brunel D, Revilla P, Rodriguez VM, Moreno-Gonzalez J, Melchinger A, Bauer E, et al. Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics. 2012;192(2):715–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jannink JL, Lorenz AJ, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics. 2010;9(2):166–77.
Article
CAS
PubMed
Google Scholar
Burgueno J, de Los Campos G, Weigel K, Crossa J. Genomic prediction of breeding values when modeling genotype x environment interaction using pedigree and dense molecular markers. Crop Sci. 2012;52(2):707–19.
Article
Google Scholar
Poland JA, Brown PJ, Sorrells ME, Jannink JL. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One. 2012;7(2):e32253.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crossa J, Beyene Y, Kassa S, Perez P, Hickey JM, Chen C, de Los Campos G, Burgueno J, Windhausen VS, Buckler E, et al. Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3-Genes Genom Genet. 2013;3(11):1903–26.
Google Scholar
Zhang X, Perez-Rodriguez P, Semagn K, Beyene Y, Babu R, Lopez-Cruz MA, Vicente FS, Olsen M, Buckler E, Jannink JL, et al. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity. 2015;114(3):291–9.
Article
CAS
PubMed
Google Scholar
Hung HY, Browne C, Guill K, Coles N, Eller M, Garcia A, Lepak N, Melia-Hancock S, Oropeza-Rosas M, Salvo S, et al. The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population. Heredity. 2012;108(5):490–9.
Article
CAS
PubMed
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5), e19379.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.
Article
CAS
PubMed
Google Scholar
Wang J, Li H, Zhang L, Li C, Meng L. QTL iciMapping Software. Beijing: Isbreeding; 2012. Available: http://www.isbreeding.net.
Google Scholar
Li H, Bradbury P, Ersoz E, Buckler ES, Wang J. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS One. 2011;6(3), e17573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016;12(2), e1005767.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valdar W, Holmes CC, Mott R, Flint J. Mapping in structured populations by resample model averaging. Genetics. 2009;182(4):1263–77.
Article
PubMed
PubMed Central
Google Scholar
Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol. 2012;160(2):846–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotech. 2013;31(1):46–53.
Article
CAS
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome. 2011;4(3):250–5.
Article
Google Scholar