Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
Article
CAS
PubMed
Google Scholar
Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol. 2005;15(3):331–41.
Article
CAS
PubMed
Google Scholar
Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C. Identification of virus-encoded microRNAs. Science. 2004;304(5671):734–6.
Article
CAS
PubMed
Google Scholar
Lin MV, King LY, Chung RT. Hepatitis C virus-associated cancer. Annu Rev Pathol: Mech Dis. 2015;10:345–70.
Article
CAS
Google Scholar
Zhang X-D, Wang Y, Ye L-H. Hepatitis B virus X protein accelerates the development of hepatoma. Cancer Biol Med. 2014;11(3):182–90.
PubMed
PubMed Central
Google Scholar
Zhang X, Daucher M, Armistead D, Russell R, Kottilil S. MicroRNA expression profiling in HCV-infected human hepatoma cells identifies potential anti-viral targets induced by interferon-α. PLoS One. 2013;8(2):e55733.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kincaid RP, Sullivan CS. Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog. 2012;8(12):e1003018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer. 2014;14(9):581–97.
Article
CAS
PubMed
Google Scholar
Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113(8):6207–33.
Article
CAS
PubMed
Google Scholar
Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122–a key factor and therapeutic target in liver disease. J Hepatol. 2015;62(2):448–57.
Article
CAS
PubMed
Google Scholar
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci. 2002;99(24):15524–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagana A, Russo F, Sismeiro C, Giugno R, Pulvirenti A, Ferro A. Variability in the incidence of miRNAs and genes in fragile sites and the role of repeats and CpG islands in the distribution of genetic material. PLoS One. 2010;5(6):e11166.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis BP, Shih I-H, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.
Article
CAS
PubMed
Google Scholar
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, Lai EC. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 2007;17(12):1850–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.
Article
PubMed Central
Google Scholar
Paraskevopoulou MD, Vlachos IS, Hatzigeorgiou AG. DIANA‐TarBase and DIANA Suite Tools: Studying Experimentally Supported microRNA Targets. Curr Protoc Bioinformatics. 2016;55:12.14. 11–8.
Google Scholar
Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG. DIANA-miRPath v3. 0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43:W460–6.
Article
PubMed
PubMed Central
Google Scholar
Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5(10):1122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong J, Liu C, Liu W, Wu Y, Ma Z, Chen H, Guo A-Y. An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools. Database. 2015;2015:bav029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chou C-H, Chang N-W, Shrestha S, Hsu S-D, Lin Y-L, Lee W-H, Yang C-D, Hong H-C, Wei T-Y, Tu S-J. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016;44(D1):D239–47.
Article
PubMed
Google Scholar
Ye L, Su X, Wu Z, Zheng X, Wang J, Zi C, Zhu G, Wu S, Bao W. Analysis of differential miRNA expression in the duodenum of Escherichia coli F18-sensitive and-resistant weaned piglets. PLoS One. 2012;7(8):e43741.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heras M, Ortin A, Cousens C, Minguijon E, Sharp J. Enzootic nasal adenocarcinoma of sheep and goats. Curr Top Microbiol Immunol. 2003;275:201–23.
PubMed
Google Scholar
Kawasako K, Okamoto M, Kurosawa T, Nakade T, Kirisawa R, Miyashou T, Komine M, Go T, Imazu S, Takeuchi N. Enzootic intranasal tumour virus infection in apparently healthy sheep in Japan. Vet Rec. 2005;157(4):118.
Article
CAS
PubMed
Google Scholar
Walsh SR, Linnerth-Petrik NM, Laporte AN, Menzies PI, Foster RA, Wootton SK. Full-length genome sequence analysis of enzootic nasal tumor virus reveals an unusually high degree of genetic stability. Virus Res. 2010;151(1):74–87.
Article
CAS
PubMed
Google Scholar
Yi G, KaiYu W, QiGui Y, YingDong Y, DeFang C, JinLu H. Pathomorphologic observation of enzootic intranasal adenocarcinoma in Nanjiang yellow goats. Chin J Vet Sci. 2010;30(8):1095–7.
Google Scholar
De las Heras M, de Jalon JG, Minguijon E, Gray E, Dewar P, Sharp J. Experimental transmission of enzootic intranasal tumors of goats. Vet Pathol. 1995;32(1):19–23.
Article
PubMed
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, Thorsson V. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 2006;7(5):R36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 2008;26(4):407–15.
Article
CAS
PubMed
Google Scholar
Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P. Fast folding and comparison of RNA secondary structures. Monatsh Chem. 1994;125(2):167–88.
Article
CAS
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2004;5(1):R1.
Article
Google Scholar
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2011;40:D109–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S. AmiGO: online access to ontology and annotation data. Bioinformatics. 2009;25(2):288–9.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 < sup > − ΔΔCT</sup > Method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar
Rings D, Rojko J. Naturally occurring nasal obstructions in 11 sheep. Cornell Vet. 1985;75(2):269–76.
CAS
PubMed
Google Scholar
De las Heras M, de Jalon JG, Sharp J. Pathology of enzootic intranasal tumor in thirty-eight goats. Vet Pathol. 1991;28(6):474–81.
Article
PubMed
Google Scholar
Vitellozzi G, Mughetti L, Palmarini M, Mandara M, Mechelli L, Sharp J, Manocchio I. Enzootic intranasal tumour of goats in Italy. J Veterinary Med Ser B. 1993;40(1–10):459–68.
Article
CAS
Google Scholar
Ji Z, Wang G, Xie Z, Zhang C, Wang J. Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Mol Biol Rep. 2012;39(10):9361–71.
Article
CAS
PubMed
Google Scholar
Yu H, Jun Y. Analysis of miRNAs between 70 Days Fetal and Lamb Skin. Biotechnology. 2014;5:018.
Google Scholar
Chen H, Chen G, Chen Y, Liao W, Liu C, Chang K, Chang Y, Chen S. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer. 2009;100(6):1002–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sengupta S, den Boon JA, Chen I-H, Newton MA, Stanhope SA, Cheng Y-J, Chen C-J, Hildesheim A, Sugden B, Ahlquist P. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci. 2008;105(15):5874–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia H, Ng SS, Jiang S, Cheung WK, Sze J, Bian X-W, Kung H-F, Lin MC. miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun. 2010;391(1):535–41.
Article
CAS
PubMed
Google Scholar
Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, Chiyomaru T, Enokida H, Nakagawa M, Matsubara H. miR‐145, miR‐133a and miR‐133b: Tumor‐suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer. 2010;127(12):2804–14.
Article
CAS
PubMed
Google Scholar
Chiyomaru T, Enokida H, Tatarano S, Kawahara K, Uchida Y, Nishiyama K, Fujimura L, Kikkawa N, Seki N, Nakagawa M. miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br J Cancer. 2010;102(5):883–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.
Article
CAS
PubMed
Google Scholar
Ji H, Wang Z, Perera SA, Li D, Liang M-C, Zaghlul S, McNamara K, Chen L, Albert M, Sun Y. Mutations in BRAF and KRAS converge on activation of the mitogen-activated protein kinase pathway in lung cancer mouse models. Cancer Res. 2007;67(10):4933–9.
Article
CAS
PubMed
Google Scholar
Roy S, Jørgensen HG, Roy P, Abed El Baky M, Melo JV, Strathdee G, Holyoake TL, Bartholomew C. BCR‐ABL1 tyrosine kinase sustained MECOM expression in chronic myeloid leukaemia. Br J Haematol. 2012;157(4):446–56.
Article
CAS
PubMed
Google Scholar
Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N, Batzer A, Rabun KM, Der CJ, Schlessinger J. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell. 1993;75(1):175–85.
Article
CAS
PubMed
Google Scholar
Skorski T, Bellacosa A, Nieborowska‐Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI‐3 k/Akt‐dependent pathway. EMBO J. 1997;16(20):6151–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med. 1996;183(3):811–20.
Article
CAS
PubMed
Google Scholar
Smith DL, Burthem J, Whetton AD. Molecular pathogenesis of chronic myeloid leukaemia. Expert Rev Mol Med. 2003;5(27):1–27.
Article
CAS
PubMed
Google Scholar
Schmidt M, de Mattos SF, van der Horst A, Klompmaker R, Kops GJL, Lam EW-F, Burgering BM, Medema RH. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol. 2002;22(22):7842–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martínez-Gac L, Marqués M, García Z, Campanero MR, Carrera AC. Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead. Mol Cell Biol. 2004;24(5):2181–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan K, Lian Z, Sun B, Clayton MM, Ng IO, Feitelson MA. Role of miR-148a in hepatitis B associated hepatocellular carcinoma. PLoS One. 2012;7(4):e35331.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen R-H, Miettinen PJ, Maruoka EM, Choy L, Derynck R. A WD-domain protein that is associated with and phosphorylated by the type II TGF-β receptor. Nature. 1995;377:548–52.
Article
CAS
PubMed
Google Scholar
Wu S, Theodorescu D, Kerbel RS, Willson J, Mulder KM, Humphrey LE, Brattain MG. TGF-beta 1 is an autocrine-negative growth regulator of human colon carcinoma FET cells in vivo as revealed by transfection of an antisense expression vector. J Cell Biol. 1992;116(1):187–96.
Article
CAS
PubMed
Google Scholar
Briskin KB, Fady C, Mickel RA, Wang M, Lichtenstein A. Inhibition of head and neck squamous cell carcinoma cell lines by transforming growth factor-β. Otolaryngol Head Neck Surg. 1995;112(6):728–34.
Article
CAS
PubMed
Google Scholar
Arteaga C, Coffey Jr R, Dugger T, McCutchen C, Moses H, Lyons R. Growth stimulation of human breast cancer cells with anti-transforming growth factor beta antibodies: evidence for negative autocrine regulation by transforming growth factor beta. Cell Growth Differ. 1990;1(8):367–74.
CAS
PubMed
Google Scholar
Bin L, Hu C, Zhan F. [The expression in situ of transforming growth factor beta s, their receptors and TGF beta-receptor interacting protein-1 in nasopharygneal carcinoma]. Zhonghua Er Bi Yan Hou Ke Za Zhi. 1999;34(4):210–2.
CAS
PubMed
Google Scholar