Qin X, Feng F, Li Y, Xu S, Siddique KHM, Liao Y, Lübberstedt T. Maize yield improvements in China: past trends and future directions. Plant Breed. 2016;135:166–76.
Article
Google Scholar
Chen J, Zhang L, Liu S, Li Z, Huang R, Li Y, Cheng H, Li X, Zhou B, Wu S, et al. The genetic basis of natural variation in kernel size and related traits using a four-way cross population in maize. PLoS One. 2016;11:e0153428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang C, Tang D, Zhang L, Liu J, Rong T. Identification of QTL for ear row number and two-ranked versus many-ranked ear in maize across four environments. Euphytica. 2015;206:33–47.
Article
Google Scholar
Calderón CI, Yandell BS, Doebley JF. Fine mapping of a QTL associated with kernel row number on chromosome 1 of maize. PLoS One. 2016;11:e0150276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu M, Xie CX, Li XH, Hao ZF, Li MS, Weng JF, Zhang DG, Bai L, Zhang SH. Mapping of quantitative trait loci for kernel row number in maize across seven environments. Mol Breeding. 2010;28:143–52.
Article
Google Scholar
Li M, Guo X, Zhang M, Wang X, Zhang G, Tian Y, Wang Z. Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Sci. 2010;178:454–62.
Article
CAS
Google Scholar
Jiao FC, Li YX, Chen L, Liu ZZ, Shi YS, Song YC, Zhang DF, Li Y, Wang TY. Genetic dissection for kernel row number in the specific maize germplasm four-rowed waxy corn. Sci Agric Sin. 2014;47:1256–64.
CAS
Google Scholar
Bommert P, Nagasawa NS, Jackson D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet. 2013;45:334–7.
Article
CAS
PubMed
Google Scholar
Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J, et al. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet. 2015;11:e1005670.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Li YX, Li C, Wu X, Qin W, Li X, Jiao F, Zhang X, Zhang D, Shi Y, et al. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. BMC Plant Biol. 2016;16:81.
Article
PubMed
PubMed Central
Google Scholar
Chen Z, Wang B, Dong X, Liu H, Ren L, Chen J, Hauck A, Song W, Lai J. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics. 2014;15:433.
Article
PubMed
PubMed Central
Google Scholar
Li C, Li Y, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Wang T. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS One. 2015;10:e0121624.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, McCouch S. Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet. 2013;126:2699–716.
Article
CAS
PubMed
Google Scholar
Zhou Z, Zhang C, Zhou Y, Hao Z, Wang Z, Zeng X, Di H, Li M, Zhang D, Yong H, et al. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. BMC Genomics. 2016;17:178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asnaghi C, Roques D, Ruffel S, Kaye C, Hoarau JY, Telismart H, Girard JC, Raboin LM, Risterucci AM, Grivet L, et al. Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet. 2004;108:759–64.
Article
CAS
PubMed
Google Scholar
Tiwari S, Sl K, Kumar V, Singh B, Rao AR, Mithra Sv A, Rai V, Singh AK, Singh NK. Mapping QTLs for salt tolerance in rice (Oryza sativa L.) by bulked segregant analysis of recombinant inbred lines using 50K SNP chip. PLoS One. 2016;11:e0153610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai H, Gao Z, Yuyama N, Ogawa N. Identification of AFLP markers closely linked to the rhm gene for resistance to southern corn leaf blight in maize by using bulked segregant analysis. Mol Genet Genomics. 2003;269:299–303.
Article
CAS
PubMed
Google Scholar
Liu S, Yeh C-T, Tang HM, Nettleton D, Schnable PS. Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One. 2012;7:e36406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Chao J, Cheng X, Wang R, Sun B, Wang H, Luo S, Wu T, Li Y. Mapping of a novel race specific resistance gene to phytophthora root rot of pepper (Capsicum annuum) using bulked segregant analysis combined with specific length amplified fragment sequencing strategy. PLoS One. 2016;11:e0151401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng W, Wang Y, Wang L, Ma Z, Zhao J, Wang P, Zhang L, Liu Z, Lu X. Genetic mapping and molecular marker development for Pi65(t), a novel broad-spectrum resistance gene to rice blast using next-generation sequencing. Theor Appl Genet. 2016;129:1035–44.
Article
CAS
PubMed
Google Scholar
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One. 2013;5:e58700.
Article
CAS
Google Scholar
Knapp SJ, Bridges WC. Confidence interval estimators for heritability for several mating and experiment designs. Theor Appl Genet. 1987;73:759–63.
Article
CAS
PubMed
Google Scholar
Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8:4321–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell. 2011;23:550–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kent WJ. BLAT - the BLAST-like alignment tool. Genome Res. 2002;12:656–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broman KW, Wu H, Sen S, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19:889–90.
Article
CAS
PubMed
Google Scholar
Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics. 2007;175:361–74.
Article
PubMed
PubMed Central
Google Scholar
Li S, Chou HH. LUCY2: an interactive DNA sequence quality trimming and vector removal tool. Bioinformatics. 2004;20:2865–6.
Article
CAS
PubMed
Google Scholar
Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26:873–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendes-Moreira P, Alves ML, Satovic Z, Santos JP, Santos JN, Souza JC, Pêgo SE, Hallauer AR, Patto MCV. Genetic architecture of ear fasciation in maize (Zea mays) under QTL scrutiny. PLoS One. 2015;10:e0124543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi LY, Hao ZF, Weng JF, Xie CX, Liu CL, Zhang DG, Li MS, Bai L, Li XH, Zhang SH. Identification of a major quantitative trait locus for resistance to maize rough dwarf virus in a Chinese maize inbred line X178 using a linkage map based on 514 gene-derived single nucleotide polymorphisms. Mol Breeding. 2012;30:615–25.
Article
CAS
Google Scholar
Darvasi A, Weinreb A, Minke V, Weller JI, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics. 1993;134:943–51.
CAS
PubMed
PubMed Central
Google Scholar
Xia C, Chen LL, Rong TZ, Li R, Xiang Y, Wang P, Liu CH, Dong XQ, Liu B, Zhao D, et al. Identification of a new maize inflorescence meristem mutant and association analysis using SLAF-seq method. Euphytica. 2014;202:35–44.
Article
Google Scholar
Li B, Tian L, Zhang J, Huang L, Han F, Yan S, Wang L, Zheng H, Sun J. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics. 2014;15:1086.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol. 2013;13:141.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tassell CPV, Smith TPL, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods. 2008;5:247–52.
Article
CAS
PubMed
Google Scholar
Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26:1135–45.
Article
CAS
PubMed
Google Scholar
Zheng HJ, Wu AZ, Zheng CC, Wang YF, Cai R, Shen XF, Xu RR, Liu P, Kong LJ, Dong ST. QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breed. 2009;128:54–62.
Article
CAS
Google Scholar
Zhang J, Lu XQ, Song XF, Yan JB, Song TM, Dai JR, Rocheford T, Li JS. Mapping quantitative trait loci for oil, starch, and protein concentrations in grain with high-oil maize by SSR markers. Euphytica. 2007;162:335–44.
Article
CAS
Google Scholar
Ding JQ, Wang XM, Chander S, Yan JB, Li JS. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breeding. 2008;22:395–403.
Article
Google Scholar
Liu ZH, Ji HQ, Cui ZT, Wu X, Duan LJ, Feng XX, Tang JH. QTL detected for grain-filling rate in maize using a RIL population. Mol Breeding. 2010;27:25–36.
Article
Google Scholar
Mackay TF, Stone EA, Ayroles JF. The genetics of quantitative traits: challenges and prospects. Nat Rev Genet. 2009;10:565–77.
Article
CAS
PubMed
Google Scholar
Cai L, Li K, Yang X, Li J. Identification of large-effect QTL for kernel row number has potential for maize yield improvement. Mol Breeding. 2014;34:1087–96.
Article
CAS
Google Scholar
Doebley J, Stec A. Genetic analysis of the morphological differences between maize and teosinte. Genetics. 1991;129:285–95.
CAS
PubMed
PubMed Central
Google Scholar
Karen Sabadin P, Lopes de Souza Jr C, Pereira de Souza A, Augusto Franco Garcia A. QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas. 2008;145:194–203.
Article
Google Scholar
Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J. 2015;13:613–24.
Article
CAS
PubMed
Google Scholar
Wang R, Sun L, Bao L, Zhang J, Jiang Y, Yao J, Song L, Feng J, Liu S, Liu Z. Bulk segregant RNA-seq reveals expression and positional candidate genes and allele-specific expression for disease resistance against enteric septicemia of catfish. BMC Genomics. 2013;14:1–18.
Article
CAS
Google Scholar
Tanaka W, Pautler M, Jackson D, Hirano HY. Grass meristems II: inflorescence architecture, flower development and meristem fate. Plant Cell Physiol. 2013;54:313–24.
Article
CAS
PubMed
Google Scholar
Bommert P, Satoh-Nagasawa N, Jackson D, Hirano HY. Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol. 2005;46:69–78.
Article
CAS
PubMed
Google Scholar
Yang Q, Zhang D, Xu M. A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. J Integr Plant Biol. 2012;54:228–37.
Article
PubMed
Google Scholar
Nair SK, Babu R, Magorokosho C, Mahuku G, Semagn K, Beyene Y, Das B, Makumbi D, Lava Kumar P, Olsen M, et al. Fine mapping of Msv1, a major QTL for resistance to maize streak virus leads to development of production markers for breeding pipelines. Theor Appl Genet. 2015;128:1839–54.
Article
CAS
PubMed
Google Scholar
Dong X, Xu X, Miao J, Li L, Zhang D, Mi X, Liu C, Tian X, Melchinger AE, Chen S. Fine mapping of qhir1 influencing in vivo haploid induction in maize. Theor Appl Genet. 2013;126:1713–20.
Article
CAS
PubMed
Google Scholar