Rengasamy P. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Anim Prod Sci. 2002;42(3):351–61.
Article
Google Scholar
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–81.
Article
CAS
PubMed
Google Scholar
Cuin TA, Shabala S. Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ. 2007;30(7):875–85.
Article
CAS
PubMed
Google Scholar
Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK. Using membrane transporters to improve crops for sustainable food production. Nature. 2013;497(7447):60–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flowers TJ. Improving crop salt tolerance. J Exp Bot. 2004;55(396):307–19.
Article
CAS
PubMed
Google Scholar
Bergmann DC, Sack FD. Stomatal development. Annu Rev Plant Biol. 2007;58:163–81.
Article
CAS
PubMed
Google Scholar
Kim T-H, Boehmer M, Hu H, Nishimura N, Schroeder JI. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling. Annu Rev Plant Biol. 2010;61:561–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laza MRC, Kondo M, Ideta O, Barlaan E, Imbe T. Quantitative trait loci for stomatal density and size in lowland rice. Euphytica. 2010;172(2):149–58.
Article
Google Scholar
Lawson T, Blatt MR. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 2014;164(4):1556–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change. Nature. 2003;424(6951):901–8.
Article
CAS
PubMed
Google Scholar
Ainsworth EA, Rogers A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 2007;30(3):258–70.
Article
CAS
PubMed
Google Scholar
Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53:247–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fricke W, Akhiyarova G, Veselov D, Kudoyarova G. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot. 2004;55(399):1115–23.
Article
CAS
PubMed
Google Scholar
Fricke W, Akhiyarova G, Wei WX, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, et al. The short-term growth response to salt of the developing barley leaf. J Exp Bot. 2006;57(5):1079–95.
Article
CAS
PubMed
Google Scholar
Reef R, Lovelock CE. Regulation of water balance in mangroves. Ann Bot. 2015;115(3):385–95.
Article
PubMed
Google Scholar
Shabala S, Pottosin I. Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant. 2014;151(3):257–79.
Article
CAS
PubMed
Google Scholar
El-Wahab A, El-Helw H, Tolba H. Physiological studies on the effect of inoculation with arbuscular mycorrhizae (AM) fungi on superior grape rootings under salt stress conditions. Nat Sci. 2011;9(1):85–100.
Google Scholar
Shabala S, Hariadi Y, Jacobsen S-E. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na + loading and stomatal density. Plant Physiol. 2013;170(10):906–14.
Article
CAS
Google Scholar
Shabala L, Mackay A, Tian Y, Jacobsen SE, Zhou D, Shabala S. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol Plant. 2012;146(1):26–38.
Article
CAS
PubMed
Google Scholar
Zhu M, Zhou M, Shabala L, Shabala S. Linking osmotic adjustment and stomatal characteristics with salinity stress tolerance in contrasting barley accessions. Funct Plant Biol. 2015;42(3):252–63.
CAS
Google Scholar
Centritto M, Loreto F, Chartzoulakis K. The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ. 2003;26(4):585–94.
Article
Google Scholar
Aminian R, Mohammadi S, Hoshmand S, Khodombashi M. Chromosomal analysis of photosynthesis rate and stomatal conductance and their relationships with grain yield in wheat (Triticum aestivum L.) under water-stressed and well-watered conditions. Acta Physiol Plant. 2011;33(3):755–64.
Article
Google Scholar
Khazaei H, Monneveux P, Hongbo S, Mohammady S. Variation for stomatal characteristics and water use efficiency among diploid, tetraploid and hexaploid Iranian wheat landraces. Genet Resour Crop Evol. 2010;57(2):307–14.
Article
Google Scholar
Venora G, Calcagno F. Study of stomatal parameters for selection of drought resistant varieties in Triticum durum DESF. Euphytica. 1991;57(3):275–83.
Article
Google Scholar
Wang H, Clarke J. Relationship of excised-leaf water loss and stomatal frequency in wheat. Can J Plant Sci. 1993;73(1):93–9.
Article
Google Scholar
Liu X, Mak M, Babla M, Wang F, Chen G, Veljanoski F, Wang G, Shabala S, Zhou M, Chen Z. Linking stomatal traits and slow anion channel genes to grain yield for salinity tolerance in barley. Front Plant Sci. 2014;5:634.
PubMed
PubMed Central
Google Scholar
Juenger TE, McKay JK, Hausmann N, Keurentjes JJB, Sen S, Stowe KA, Dawson TE, Simms EL, Richards JH. Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana: delta C-13, stomatal conductance and transpiration efficiency. Plant Cell Environ. 2005;28(6):697–708.
Article
CAS
Google Scholar
Price AH, Young EM, Tomos AD. Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa). New Phytol. 1997;137(1):83–91.
Article
CAS
Google Scholar
Teng S, Qian Q, Zeng DL, Kunihiro Y, Fujimoto K, Huang DN, Zhu LH. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica. 2004;135(1):1–7.
Article
CAS
Google Scholar
Herve D, Fabre F, Berrios EF, Leroux N, Al Chaarani G, Planchon C, Sarrafi A, Gentzbittel L. QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) under greenhouse conditions. J Exp Bot. 2001;52(362):1857–64.
Article
CAS
PubMed
Google Scholar
Khazaei H, O’Sullivan DM, Sillanpaa MJ, Stoddard FL. Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.). Theor Appl Genet. 2014;127(11):2371–85.
Article
PubMed
Google Scholar
Wojcik-Jagla M, Rapacz M, Tyrka M, Koscielniak J, Crissy K, Zmuda K. Comparative QTL analysis of early short-time drought tolerance in Polish fodder and malting spring barleys. Theor Appl Genet. 2013;126(12):3021–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Sun G, Ren X, Li C, Sun D. Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genet. 2015;16(1):1.
Article
Google Scholar
Patto MV, Rubiales D, Martin A, Hernandez P, Lindhout P, Niks R, Stam P. QTL mapping provides evidence for lack of association of the avoidance of leaf rust in Hordeum chilense with stomata density. Theor Appl Genet. 2003;106(7):1283–92.
Article
Google Scholar
Zhou G, Johnson P, Ryan PR, Delhaize E, Zhou M. Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.). Mol Breed. 2012;29(2):427–36.
Article
Google Scholar
O’Carrigan A, Hinde E, Lu N, Xu X-Q, Duan H, Huang G, Mak M, Bellotti B, Chen Z-H. Effects of light irradiance on stomatal regulation and growth of tomato. Environ Exp Bot. 2014;98:65–73.
Article
Google Scholar
Mak M, Babla M, Xu S-C, O’Carrigan A, Liu X-H, Gong Y-M, Holford P, Chen Z-H. Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environ Exp Bot. 2014;98:1–12.
Article
CAS
Google Scholar
Xu R, Wang J, Li C, Johnson P, Lu C, Zhou M. A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L.). PLoS One. 2012;7(8):e43079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Ooijen JW. MapQTL 6.0, software for the mapping of quantitative trait loci in experimental populations of dihaploid species. Wageningen: Kyazma BV; 2009.
Google Scholar
Voorrips RE. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93(1):77–8.
Article
CAS
PubMed
Google Scholar
Bulmer MG. Principles of Statistics. New York: Dover Publications; 1979.
Google Scholar
Consortium IBGS. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491(7426):711–6.
Google Scholar
Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Munoz-Amatriain M, Close TJ, Wise RP, Schulman AH, et al. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 2013;76(4):718–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot. 2007;58(15–16):4245–55.
Article
CAS
PubMed
Google Scholar
Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S. Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ. 2005;28(10):1230–46.
Article
CAS
Google Scholar
Chen Z, Zhou M, Newman IA, Mendham NJ, Zhang G, Shabala S. Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol. 2007;34(2):150–62.
Article
CAS
Google Scholar
Lee G, Carrow RN, Duncan RR. Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes. Plant Sci. 2004;166(6):1417–25.
Article
CAS
Google Scholar
Lake JA, Woodward FI, Quick WP. Long-distance CO2 signalling in plants. J Exp Bot. 2002;53(367):183–93.
Article
CAS
PubMed
Google Scholar
Jiang Q, Roche D, Monaco TA, Hole D. Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes. Plant Physiol. 2006;8(4):515–21.
CAS
Google Scholar
Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot. 2000;51:475–85.
Article
CAS
PubMed
Google Scholar
Miskin KE, Rasmusson DC, Moss DN. Inheritance and physiological effects of stomatal frequency in barley. Crop Sci. 1972;12(6):780–3.
Article
Google Scholar
Peng S, Laza RC, Khush GS, Sanico AL, Visperas RM, Garcia FV. Transpiration efficiencies of Indica and improved tropical Japonica rice grown under irrigated conditions. Euphytica. 1998;103(1):103–8.
Article
Google Scholar
Brugnoli E, Bjorkman O. Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta. 1992;187(3):335–47.
Article
CAS
PubMed
Google Scholar
Fan Y, Shabala S, Ma Y, Xu R, Zhou M. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics. 2015;16(1):43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. 2012;63(10):3523–43.
Article
CAS
PubMed
Google Scholar
Siahsar B, Narouei M. Mapping QTLs of physiological traits associated with salt tolerance in ‘Steptoe’ × ‘Morex’ doubled haploid lines of barley at seedling stage. J Food, Agric Environ. 2010;8(2):751–9.
Google Scholar
Nguyen VL, Ribot SA, Dolstra O, Niks RE, Visser RG, van der Linden CG. Identification of quantitative trait loci for ion homeostasis and salt tolerance in barley (Hordeum vulgare L.). Mol Breed. 2013;31(1):137–52.
Article
CAS
Google Scholar
Xue D, Huang Y, Zhang X, Wei K, Westcott S, Li C, Chen M, Zhang G, Lance R. Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica. 2009;169(2):187–96.
Article
Google Scholar
Ma Y, Shabala S, Li C, Liu C, Zhang W, Zhou M. Quantitative trait loci for salinity tolerance identified under drained and waterlogged conditions and their association with flowering time in barley (Hordeum vulgare L). PLoS One. 2015;10(8):e0134822.
Article
PubMed
PubMed Central
Google Scholar
Mumm P, Wolf T, Fromm J, Roelfsema MRG, Marten I. Cell type-specific regulation of ion channels within the maize stomatal complex. Plant Cell Physiol. 2011;52(8):1365–75.
Article
CAS
PubMed
Google Scholar
Raschke K, Fellows MP. Stomatal movement in Zea mays shuttle of potassium and chloride between guard cells and subsidiary cells. Planta. 1971;101:296–316.
Article
CAS
PubMed
Google Scholar
Chen ZH, Hills A, Lim CK, Blatt MR. Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation. Plant J. 2010;61(5):816–25.
Article
CAS
PubMed
Google Scholar
Chen Z-H, Hills A, Bätz U, Amtmann A, Lew VL, Blatt MR. Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiol. 2012;159(3):1235–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Papanatsiou M, Eisenach C, Karnik R, Williams M, Hills A, Lew VL, Blatt MR. Systems dynamic modeling of a guard cell Cl− channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration. Plant Physiol. 2012;160(4):1956–67.
Article
CAS
PubMed
PubMed Central
Google Scholar