Li J, Liu Y, Cheng JJ, Mos M, Daroch M. Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds. N Biotechnol. 2015;32(6):588–96.
Article
PubMed
Google Scholar
Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D. Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol. 2011;102(22):10163–72.
Article
CAS
PubMed
Google Scholar
Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature. 2012;488(7411):320–8.
Article
CAS
PubMed
Google Scholar
Anemaet IG, Bekker M, Hellingwerf KJ. Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production. Mar Biotechnol (NY). 2010;12(6):619–29.
Article
CAS
Google Scholar
Jones CS, Mayfield SP. Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol. 2012;23(3):346–51.
Article
CAS
PubMed
Google Scholar
Cronan Jr JE, Weisberg LJ, Allen RG. Regulation of membrane lipid synthesis in Escherichia coli. Accumulation of free fatty acids of abnormal length during inhibition of phospholipid synthesis. J Biol Chem. 1975;250(15):5835–40.
CAS
PubMed
Google Scholar
Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner 2nd WD, et al. Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol. 2011;77(22):8114–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lennen RM, Pfleger BF. Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol. 2012;30(12):659–67.
Article
CAS
PubMed
Google Scholar
Liu H, Yu C, Feng D, Cheng T, Meng X, Liu W, Zou H, Xian M. Production of extracellular fatty acid using engineered Escherichia coli. Microb Cell Fact. 2012;11:41.
Article
PubMed
PubMed Central
Google Scholar
Rittmann BE. Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng. 2008;100(2):203–12.
Article
CAS
PubMed
Google Scholar
Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol. 2011;91(3):471–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Sheng J, Curtiss 3rd R. Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A. 2011;108(17):6899–904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruffing AM. RNA-Seq analysis and targeted mutagenesis for improved free fatty acid production in an engineered cyanobacterium. Biotechnol Biofuels. 2013;6(1):113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruffing AM. Improved Free Fatty Acid Production in Cyanobacteria with Synechococcus sp. PCC 7002 as Host. Front Bioeng Biotechnol. 2014;2:17.
Article
PubMed
PubMed Central
Google Scholar
Liu X, Fallon S, Sheng J, Curtiss 3rd R. CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass. Proc Natl Acad Sci U S A. 2011;108(17):6905–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Curtiss 3rd R. Thermorecovery of cyanobacterial fatty acids at elevated temperatures. J Biotechnol. 2012;161(4):445–9.
Article
CAS
PubMed
Google Scholar
Ruffing AM, Jones HD. Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng. 2012;109(9):2190–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
NBRC. Arthrospira platensis NIES-39. In: National Institute of Technology and Evaluation (NITE). 2015. http://www.nite.go.jp/en/nbrc/genome/project/annotation/apl.html. Accessed 15 January 2016.
Fujisawa T, Narikawa R, Okamoto S, Ehira S, Yoshimura H, Suzuki I, Masuda T, Mochimaru M, Takaichi S, Awai K, et al. Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Res. 2010;17(2):85–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneko T, Nakamura Y, Sasamoto S, Watanabe A, Kohara M, Matsumoto M, Shimpo S, Yamada M, Tabata S. Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. DNA Res. 2003;10(5):221–8.
Article
CAS
PubMed
Google Scholar
Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996;3(3):109–36.
Article
CAS
PubMed
Google Scholar
Wang B, Wang J, Zhang W, Meldrum DR. Application of synthetic biology in cyanobacteria and algae. Front Microbiol. 2012;3:344.
PubMed
PubMed Central
Google Scholar
Ranganathan S, Tee TW, Chowdhury A, Zomorrodi AR, Yoon JM, Fu Y, Shanks JV, Maranas CD. An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. Metab Eng. 2012;14(6):687–704.
Article
CAS
PubMed
Google Scholar
Ng CY, Jung MY, Lee J, Oh MK. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact. 2012;11:68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One. 2013;8(1):e54144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fowler ZL, Gikandi WW, Koffas MA. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol. 2009;75(18):5831–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anfelt J, Kaczmarzyk D, Shabestary K, Renberg B, Rockberg J, Nielsen J, Uhlén M, Hudson EP. Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production. Microb Cell Fact. 2015;14(1):1.
Article
Google Scholar
Erdrich P, Knoop H, Steuer R, Klamt S. Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microb Cell Fact. 2014;13(1):1.
Article
Google Scholar
Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol. 2010;6(4):e1000744.
Article
PubMed
PubMed Central
Google Scholar
Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng. 2003;84(6):647–57.
Article
CAS
PubMed
Google Scholar
Patil KR, Rocha I, Forster J, Nielsen J. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics. 2005;6:308.
Article
PubMed
PubMed Central
Google Scholar
Beciri D. Significant biomass increase of genetically altered algae. In: Bionics news and articles. 2011. http://www.robaid.com/bionics/significant-biomass-increase-of-genetically-altered-algae.htm. Accessed 30 July 2015.
Google Scholar
Albuquerque NM. Engineering alternative fuel with cyanobacteria. In: Sandia Labs News Releases. 2013. https://share.sandia.gov/news/resources/news_releases/cyanobacteria_fuel/. Accessed 26 July 2015.
Liu T, Khosla C. Genetic engineering of Escherichia coli for biofuel production. Annu Rev Genet. 2010;44:53–69.
Article
CAS
PubMed
Google Scholar
Janssen HJ, Steinbuchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels. 2014;7(1):7.
Article
PubMed
PubMed Central
Google Scholar
Fan J, Yan C, Zhang X, Xu C. Dual role for phospholipid:diacylglycerol acyltransferase: enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsis leaves. Plant Cell. 2013;25(9):3506–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y, Tabata S, Yamato KT, et al. Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol. 2004;135(3):1595–607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao Y, Lu Y, Peng KT, Huang T, Niu YF, Xie WH, Yang WD, Liu JS, Li HY. Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnol Biofuels. 2014;7:10.
Article
Google Scholar
Sanjaya, Miller R, Durrett TP, Kosma DK, Lydic TA, Muthan B, Koo AJ, Bukhman YV, Reid GE, Howe GA, et al. Altered lipid composition and enhanced nutritional value of Arabidopsis leaves following introduction of an algal diacylglycerol acyltransferase 2. Plant Cell. 2013;25(2):677–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang X, Feng H, Zhang J, Chen WN. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production. PLoS One. 2013;8(12):e84661.
Article
PubMed
PubMed Central
Google Scholar
Trentacoste EM, Shrestha RP, Smith SR, Gle C, Hartmann AC, Hildebrand M, Gerwick WH. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A. 2013;110(49):19748–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lennen RM, Pfleger BF. Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One. 2013;8(1):e54031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruffing AM. Metabolic engineering of hydrocarbon biosynthesis for biofuel production. Croatia: INTECH Open Access Publisher; 2013.
Ruffing AM. Liquid, Gaseous and Solid Biofuels - Conversion Techniques(chapter8: Metabolic Engineering of Hydrocarbon Biosynthesis for Biofuel Production). 2013(DOI: 10.5772/52050).
Kaczmarzyk D, Fulda M. Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol. 2010;152(3):1598–610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho H, Cronan Jr JE. Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J Biol Chem. 1995;270(9):4216–9.
Article
CAS
PubMed
Google Scholar
Batterton Jr JC, Van Baalen C. Growth responses of blue-green algae to sodium chloride concentration. Arch Mikrobiol. 1971;76(2):151–65.
Article
CAS
PubMed
Google Scholar
Selvan BK, Revathi M, Piriya PS, Vasan PT, Prabhu DI, Vennison SJ. Biodiesel production from marine cyanobacteria cultured in plate and tubular photobioreactors. Indian J Exp Biol. 2013;51(3):262–8.
CAS
PubMed
Google Scholar
Kawata Y, Yano S, Kojima H, Toyomizu M. Transformation of Spirulina platensis strain C1 (Arthrospira sp. PCC9438) with Tn5 transposase-transposon DNA-cation liposome complex. Mar Biotechnol (NY). 2004;6(4):355–63.
Article
CAS
Google Scholar
Latifi A, Ruiz M, Zhang C-C. Oxidative stress in cyanobacteria. FEMS Microbiol Rev. 2009;33(2):258–78.
Article
CAS
PubMed
Google Scholar
Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci. 2013;110(49):19748–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol. 2010;28(9):977–82.
Article
CAS
PubMed
Google Scholar
Ziegler K, Diener A, Herpin C, Richter R, Deutzmann R, Lockau W. Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi‐L‐arginyl‐poly‐L‐aspartate (cyanophycin). Eur J Biochem. 1998;254(1):154–9.
Article
CAS
PubMed
Google Scholar
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42(D1):D206–14.
Article
CAS
PubMed
Google Scholar
Marbouty M, Mazouni K, Saguez C, Cassier-Chauvat C, Chauvat F. Characterization of the Synechocystis strain PCC 6803 penicillin-binding proteins and cytokinetic proteins FtsQ and FtsW and their network of interactions with ZipN. J Bacteriol. 2009;191(16):5123–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0. 2013. http://wwwR-projectorg/.
Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Mathematics. 1987;20:53–65.
Article
Google Scholar
Dufresne A, Garczarek L, Partensky F. Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol. 2005;6(2):R14.
Article
PubMed
PubMed Central
Google Scholar
Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8(8):1553–65.
Article
PubMed
PubMed Central
Google Scholar
Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev. 2009;73(2):249–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito H, Tanaka A. Evolution of a divinyl chlorophyll-based photosystem in Prochlorococcus. Proc Natl Acad Sci U S A. 2011;108(44):18014–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mackey KR, Paytan A, Caldeira K, Grossman AR, Moran D, McIlvin M, Saito MA. Effect of temperature on photosynthesis and growth in marine Synechococcus spp. Plant Physiol. 2013;163(2):815–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pittera J, Humily F, Thorel M, Grulois D, Garczarek L, Six C. Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus. ISME J. 2014;8(6):1221–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ting CS, Rocap G, King J, Chisholm SW. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 2002;10(3):134–42.
Article
CAS
PubMed
Google Scholar
Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol. 2015;13(1):13–27.
Article
CAS
PubMed
Google Scholar
Sun Z, Blanchard JL. Strong genome-wide selection early in the evolution of Prochlorococcus resulted in a reduced genome through the loss of a large number of small effect genes. PLoS One. 2014;9(3):e88837.
Article
PubMed
PubMed Central
Google Scholar
Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, Frois-Moniz K, Waterbury J, Chisholm SW. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr. 2007;5:353–62.
Article
CAS
Google Scholar
Yu J, Liberton M, Cliften PF, Head RD, Jacobs JM, Smith RD, Koppenaal DW, Brand JJ, Pakrasi HB. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO(2). Sci Rep. 2015;5:8132.
Article
CAS
PubMed
Google Scholar
Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial vesicles in marine ecosystems. Science. 2014;343(6167):183–6.
Article
CAS
PubMed
Google Scholar
Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, Gabaldon T, Rattei T, Creevey C, Kuhn M, et al. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 2014;42(Database issue):D231–239.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010;38(Database issue):D355–360.
Article
CAS
PubMed
Google Scholar
UniProt C. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res. 2010;38(Database issue):D142–148.
Google Scholar
Radakovits R, Eduafo PM, Posewitz MC. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng. 2011;13(1):89–95.
Article
CAS
PubMed
Google Scholar
Li HY, Lu Y, Zheng JW, Yang WD, Liu JS. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Mar Drugs. 2014;12(1):153–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV, Dubchak I. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 2014;42(Database issue):D26–31.
Article
CAS
PubMed
Google Scholar
Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, et al. The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res. 2012;40(Database issue):D26–32.
Article
CAS
PubMed
Google Scholar
Tatusova T, Ciufo S, Fedorov B, O'Neill K, Tolstoy I. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res. 2015;43(7):3872.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, de Marsac NT, Rippka R. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci. 2013;110(3):1053–8.
Article
CAS
PubMed
Google Scholar
Alam I, Antunes A, Kamau AA, Ba Alawi W, Kalkatawi M, Stingl U, Bajic VB. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles. PLoS One. 2013;8(12):e82210.
Article
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mount DW. Using the Basic Local Alignment Search Tool (BLAST). CSH Protoc. 2007;2007:pdb top17.
PubMed
Google Scholar
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, et al. The Pfam protein families database. Nucleic Acids Res. 2004;32(Database issue):D138–141.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(Web Server issue):W29–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33(2):511–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boc A, Diallo AB, Makarenkov V. T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 2012;40(Web Server issue):W573–579.
Article
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–90.
Article
CAS
PubMed
Google Scholar
Ruffing AM. Borrowing genes from Chlamydomonas reinhardtii for free fatty acid production in engineered cyanobacteria. J Appl Phycol. 2013;25(5):1495–507.
Article
CAS
Google Scholar
INKSCAPE Draw Freely. 2004. https://inkscape.org/en/. Accessed 26 Jan 2016.