Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crop Res. 2000;67(1):35–49.
Article
Google Scholar
Li Y, Shen J, Wang T, Chen Q, Zhang X, Fu T, Meng J, Tu J, Ma C. QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Aust J Agric Res. 2007;58(8):759–66.
Article
CAS
Google Scholar
Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics. 2009;182(3):851–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi J, Zhan J, Yang Y, Ye J, Huang S, Li R, Wang X, Liu G, Wang H. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci Rep. 2015;5:14481.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu B, Zhang W, Chen XH, Li N, Cui N, Li TL. Research progress of flower bud differentiation mechanism of plant. Chin Agric Sci Bull. 2010;24:109–14.
Google Scholar
Vaddepalli P, Scholz S, Schneitz K. Pattern formation during early floral development. Curr Opin Genet Develop. 2015;32:16–23.
Article
CAS
Google Scholar
Dodsworth S. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol. 2009;336(1):1–9.
Article
CAS
PubMed
Google Scholar
Gaillochet C, Daum G, Lohmann JU. O cell, where art thou? The mechanisms of shoot meristem patterning. Curr Opin Plant Biol. 2015;23:91–7.
Article
PubMed
Google Scholar
Holt AL, van Haperen JM, Groot EP, Laux T. Signaling in shoot and flower meristems of Arabidopsis thaliana. Curr Opin Plant Biol. 2014;17:96–102.
Article
CAS
PubMed
Google Scholar
Zadnikova P, Simon R. How boundaries control plant development. Curr Opin Plant Biol. 2014;17:116–25.
Article
PubMed
Google Scholar
Yruela I. Plant development regulation: Overview and perspectives. J Plant Physiol. 2015;182:62–78.
Article
CAS
PubMed
Google Scholar
Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano HY. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development. 2004;131(22):5649–57.
Article
CAS
PubMed
Google Scholar
Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano HY. Conservation and diversification of meristem maintenance mechanism in Oryza sativa: Function of the FLORAL ORGAN NUMBER2 gene. Plant Cell Physiol. 2006;47(12):1591–602.
Article
CAS
PubMed
Google Scholar
Jiang L, Zhang W, Xia Z, Jiang G, Qian Q, Li A, Cheng Z, Zhu L, Mao L, Zhai W. A paracentric inversion suppresses genetic recombination at the FON3 locus with breakpoints corresponding to sequence gaps on rice chromosome 11L. Mol Genet Genomics. 2007;277(3):263–72.
Article
CAS
PubMed
Google Scholar
Chu H, Qian Q, Liang W, Yin C, Tan H, Yao X, Yuan Z, Yang J, Huang H, Luo D, et al. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol. 2006;142(3):1039–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Song X, Cheng Y, Zou X, Zeng L, Qiao X, Lu G, Fu G, Qu Z, Zhang X. Identification of QTLs for branch number in oilseed rape (Brassica napus L.). J Genet Genomics. 2014;41(10):557–9.
Article
PubMed
Google Scholar
Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12(2):87–98.
Article
CAS
PubMed
Google Scholar
Manuel G, Grabherr MG, Mitchell G, Cole T. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods. 2011;8(6):469–77.
Article
Google Scholar
Xu HM, Kong XD, Chen F, Huang JX, Lou XY, Zhao JY. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes. BMC Genomics. 2015;16(1):858.
Article
PubMed
PubMed Central
Google Scholar
Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014;345(6199):950–3.
Article
CAS
PubMed
Google Scholar
Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24(5):713–4.
Article
CAS
PubMed
Google Scholar
Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131(4):281–5.
Article
CAS
PubMed
Google Scholar
Jiang Y, Deyholos MK. Transcriptome analysis of secondary-wall-enriched seed coat tissues of canola (Brassica napus L.). Plant Cell Rep. 2010;29(4):327–42.
Article
CAS
PubMed
Google Scholar
Herrmann J, Ravilious GE, McKinney SE, Westfall CS, Lee SG, Baraniecka P, Giovannetti M, Kopriva S, Krishnan HB, Jez JM. Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation. J Biol Chem. 2014;289(15):10919–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao JH, Qi HY, Yan N, Wang HX. Advances in researches on flower bud differentiation of horticultural crops. Agric Sci Technol Equip. 2008;01:7–9.
Google Scholar
Galston AW. Polyamines as Modulators of Plant Development. Bioscience. 1983;33(6):382–8.
Article
CAS
Google Scholar
Sun WQ, Chu MY. Study on content variations of endogenous amino acids at the critical period of floral initiation in MEI-FLOWER. Acta Agriculiurae Shanghai. 1990;2:43–7.
Google Scholar
Sassi M, Ali O, Boudon F, Cloarec G, Abad U, Cellier C, Chen X, Gilles B, Milani P, Friml J, et al. An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr Biol. 2014;24(19):2335–42.
Article
CAS
PubMed
Google Scholar
Wagner D, Sablowski RW, Meyerowitz EM. Transcriptional activation of APETALA1 by LEAFY. Science. 1999;285(5427):582–4.
Article
CAS
PubMed
Google Scholar
Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992;69(5):843–59.
Article
CAS
PubMed
Google Scholar
Baumann K, Venail J, Berbel A, Domenech MJ, Money T, Conti L, Hanzawa Y, Madueno F, Bradley D. Changing the spatial pattern of TFL1 expression reveals its key role in the shoot meristem in controlling Arabidopsis flowering architecture. J Exp Bot. 2015;66(15):4769–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takacs EM, Li J, Du C, Ponnala L, Janick-Buckner D, Yu J, Muehlbauer GJ, Schnable PS, Timmermans MCP, Sun Q, et al. Ontogeny of the Maize Shoot Apical Meristem. Plant Cell. 2012;24(8):3219–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong CE, Singh MB, Bhalla PL. The dynamics of soybean leaf and shoot apical meristem transcriptome undergoing floral initiation process. PLoS One. 2013;8(6):e65319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray JA, Jones A, Godin C, Traas J. Systems analysis of shoot apical meristem growth and development: integrating hormonal and mechanical signaling. Plant Cell. 2012;24(10):3907–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shani E, Yanai O, Ori N. The role of hormones in shoot apical meristem function. Curr Opin Plant Biol. 2006;9(5):484–9.
Article
CAS
PubMed
Google Scholar
Gendron JM, Jiang-Shu L, Min F, Ming-Yi B, Stephan W, Springer PS, Kathryn B, Zhi-Yong W. Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proc Natl Acad Sci U S A. 2012;109(51):21152–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han Y, Gao S, Muegge K, Zhang W, Zhou B. Advanced Applications of RNA Sequencing and Challenges. Bioinformatics Biol Insights. 2015;9 Suppl 1:29–46.
Article
Google Scholar
Wang Z, Gerstein MM. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez-Lozano A, Yuste-Lisbona FJ, Perez-Martin F, Pineda B, Moreno V, Lozano R, Angosto T. Mutation at the tomato excessive number of floral organs (ENO) locus impairs floral meristem development, thus promoting an increased number of floral organs and fruit size. Plant Sci. 2015;232:41–8.
Article
CAS
PubMed
Google Scholar
Sun B, Ito T. Regulation of floral stem cell termination in Arabidopsis. Front Plant Sci. 2015;6:17.
PubMed
PubMed Central
Google Scholar
Han Y, Jiao Y. APETALA1 establishes determinate floral meristem through regulating cytokinins homeostasis in Arabidopsis. Plant Signal Beh. 2015;10(11):e989039.
Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development. 1991;119(3):721–43.
Google Scholar
Irish VF, Sussex IM. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell. 1990;2(8):741–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andres F, Romera-Branchat M, Martinez-Gallegos R, Patel V, Schneeberger K, Jang S, Altmuller J, Nurnberg P, Coupland G. Floral Induction in Arabidopsis by FLOWERING LOCUS T Requires Direct Repression of BLADE-ON-PETIOLE Genes by the Homeodomain Protein PENNYWISE. Plant Physiol. 2015;169(3):2187–99.
CAS
PubMed
PubMed Central
Google Scholar
Khan M, Ragni L, Tabb P, Salasini BC, Chatfield S, Datla R, Lock J, Kuai X, Despres C, Proveniers M, et al. Repression of Lateral Organ Boundary Genes by PENNYWISE and POUND-FOOLISH Is Essential for Meristem Maintenance and Flowering in Arabidopsis. Plant Physiol. 2015;169(3):2166–86.
CAS
PubMed
PubMed Central
Google Scholar
Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 2003;10(6):239–47.
Article
CAS
PubMed
Google Scholar
Tromas A, Paque S, Stierle V, Quettier AL, Muller P, Lechner E, Genschik P, Perrot-Rechenmann C. Auxin-binding protein 1 is a negative regulator of the SCF(TIR1/AFB) pathway. Nat Commun. 2013;4:2496.
Article
PubMed
Google Scholar
Dornelas MC, Van Lammeren AA, Kreis M. Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development. Plant J. 2000;21(5):419–29.
Article
CAS
PubMed
Google Scholar
Shuai B, Reynaga-Pena CG, Springer PS. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol. 2002;129(2):747–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakazawa M, Ichikawa T, Ishikawa A, Kobayashi H, Tsuhara Y, Kawashima M, Suzuki K, Muto S, Matsui M. Activation tagging, a novel tool to dissect the functions of a gene family. Plant J. 2003;34(5):741–50.
Article
CAS
PubMed
Google Scholar
Ho WW, Weigel D. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell. 2014;26(2):552–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ping J, Liu Y, Sun L, Zhao M, Li Y, She M, Sui Y, Lin F, Liu X, Tang Z, et al. Dt2Is a Gain-of-Function MADS-Domain Factor Gene That Specifies Semideterminacy in Soybean. Plant Cell. 2014;26(7):2831–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Randoux M, Daviere JM, Jeauffre J, Thouroude T, Pierre S, Toualbia Y, Perrotte J, Reynoird JP, Jammes MJ, Hibrand-Saint Oyant L, et al. RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose. New Phytol. 2014;202(1):161–73.
Article
CAS
PubMed
Google Scholar
Wang Y, Pijut PM. Isolation and characterization of a TERMINAL FLOWER 1 homolog from Prunus serotina Ehrh. Tree Physiol. 2013;33(8):855–65.
Article
PubMed
Google Scholar
Wang X, Xie B, Zhu M, Zhang Z, Hong Z. Nucleostemin-like 1 is required for embryogenesis and leaf development in Arabidopsis. Plant Mol Biol. 2011;78(1–2):31–44.
PubMed
Google Scholar
Wang X, Gingrich DK, Deng Y, Hong Z. A nucleostemin-like GTPase required for normal apical and floral meristem development in Arabidopsis. Mol Biol Cell. 2012;23(8):1446–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Veit B, Briggs SP, Schmidt RJ, Yanofsky MF, Hake S. Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature. 1998;393(6681):166–8.
Article
CAS
PubMed
Google Scholar
Doyle JJ. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–5.
Google Scholar
Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics. 2000;155(1):463–73.
CAS
PubMed
PubMed Central
Google Scholar
Li N, Shi J, Wang X, Liu G, Wang H. A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biol. 2014;14:114.
Article
PubMed
PubMed Central
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.
Article
PubMed Central
Google Scholar
Chen X, Truksa M, Shah S, Weselake RJ. A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus. Anal Biochem. 2010;405(1):138–40.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar