FAO. FAO Statistical Pocketbook. Food and Agriculture Organization of the United Nations; 2015. http://www.fao.org/documents/card/en/c/383d384a-28e6-47b3-a1a2-2496a9e017b2/. Accessed 06 Feb 2016.
National Research Council (U.S.), editor. Lost crops of Africa, Volume I Grains. Washington: National Academy Press; 1996.
Google Scholar
FAO. The State of Food Insecurity in the World: The multiple dimensions of food security. Food and Agriculture Organization. 2013. http://www.fao.org/docrep/018/i3434e/i3434e00.htm. Accessed 17 April 2016.
Grusak MA, DellaPenna D. Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:133–61.
Article
CAS
PubMed
Google Scholar
Hopkins CG. Improvement in the chemical composition of the corn kernel. J Am Chem Soc. 1899;21:1039–57.
Article
Google Scholar
Goldman IL, Rocheford TR, Dudley JW. Quantitative trait loci influencing protein and starch concentration in the Illinois Long Term Selection maize strains. Theor Appl Genet. 1993;87:217–24.
Article
CAS
PubMed
Google Scholar
Dudley JW, RJ Lambert. 100 Generations of Selection for Oil and Protein in Corn. In Plant Breeding Reviews. edited by Jules Janick. Oxford: John Wiley & Sons, Inc.; 2010. pp. 79–110. http://doi.wiley.com/10.1002/9780470650240.ch5.
Moose SP, Dudley JW, Rocheford TR. Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci. 2004;9:358–64.
Article
CAS
PubMed
Google Scholar
Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C. Combined networks regulating seed maturation. Trends Plant Sci. 2007;12:294–300.
Article
CAS
PubMed
Google Scholar
Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L. Storage reserve accumulation in arabidopsis: metabolic and developmental control of seed filling. Arab Book. 2008;6:e0113.
Article
Google Scholar
Vicente-Carbajosa J, Carbonero P. Seed maturation: developing an intrusive phase to accomplish a quiescent state. Int J Dev Biol. 2005;49:645–51.
Article
CAS
PubMed
Google Scholar
Mertz ET, Bates LS, Nelson OE. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science. 1964;145:279–80.
Article
CAS
PubMed
Google Scholar
Nelson OE, Mertz ET, Bates LS. Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science. 1965;150:1469–70.
Article
CAS
PubMed
Google Scholar
Schmidt RJ, Burr FA, Aukerman MJ, Burr B. Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc Natl Acad Sci U S A. 1990;87:46–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coleman CE, Lopes MA, Gillikin JW, Boston RS, Larkins BA. A defective signal peptide in the maize high-lysine mutant floury 2. Proc Natl Acad Sci U S A. 1995;92:6828–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poneleit CG, Alexander DE. Inheritance of linoleic and oleic acids in maize. Science. 1965;147:1585–6.
Article
CAS
PubMed
Google Scholar
Mikkilineni V, Rocheford TR. Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theor Appl Genet. 2003;106:1326–32.
Article
CAS
PubMed
Google Scholar
Wassom JJ, Mikkelineni V, Bohn MO, Rocheford TR. QTL for fatty acid composition of maize kernel oil in Illinois High Oil × B73 backcross-derived lines. Crop Sci. 2008;48:69–78.
Article
CAS
Google Scholar
Chourey PS, Nelson OE. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochem Genet. 1976;14:1041–55.
Article
CAS
PubMed
Google Scholar
Shure M, Wessler S, Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell. 1983;35:225–33.
Article
CAS
PubMed
Google Scholar
Wilson LM, Whitt SR, Ibáñez AM, Rocheford TR, Goodman MM, Buckler ES. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell Online. 2004;16:2719–33.
Article
CAS
Google Scholar
Karper RE. Inheritance of waxy endosperm in sorghum. J Hered. 1933;24:257–62.
Google Scholar
Lichtenwalner RE, Ellis EB, Rooney LW. Effect of incremental dosages of the waxy gene of sorghum on digestibility. J Anim Sci. 1978;46:1113–9.
Article
CAS
Google Scholar
Rooney LW, Pflugfelder RL. Factors affecting starch digestibility with special emphasis on sorghum and corn. J Anim Sci. 1986;63:1607–23.
Article
CAS
PubMed
Google Scholar
Martin JH. Sorghum improvement. In: Yearbook of Agriculture. Washington: USDA; 1936. p. 523–60.
Google Scholar
Boyer CD, Liu K-C. Starch and water-soluble polysaccharides from sugary endosperm of sorghum. Phytochemistry. 1983;22:2513–5.
Article
CAS
Google Scholar
Singh R, Axtell JD. High lysine mutant gene (hl) that improves protein quality and biological value of grain sorghum. Crop Sci. 1973;13:535–9.
Article
CAS
Google Scholar
Boyles RE, Cooper EA, Myers MT, Brenton Z, Rauh BL, Morris GP, et al. Genome-wide association studies of grain yield components in diverse sorghum germplasm. Plant Genome. 2016;9:1–17.
Article
Google Scholar
Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A. 2013;110:453–8.
Article
CAS
PubMed
Google Scholar
Huang X, Kurata N, Wei X, Wang Z-X, Wang A, Zhao Q, et al. A map of rice genome variation reveals the origin of cultivated rice. Nature. 2012;490:497–501.
Article
CAS
PubMed
Google Scholar
Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, et al. Genome-wide genetic changes during modern breeding of maize. Nat Genet. 2012;44:812–5.
Article
CAS
PubMed
Google Scholar
Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun. 2011;2:467.
Article
PubMed
PubMed Central
Google Scholar
Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB, et al. A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics. 2014;198:1699–716.
Article
PubMed
PubMed Central
Google Scholar
Lipka AE, Gore MA, Magallanes-Lundback M, Mesberg A, Lin H, Tiede T, et al. Genome-wide association study and pathway-level analysis of tocochromanol levels in maize grain. G3:GenesGenomesGenetics. 2014;3:1287–99.
Article
Google Scholar
Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, et al. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol. 2012;158:824–34.
Article
CAS
PubMed
Google Scholar
Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet. 2013;45:43–50.
Article
CAS
PubMed
Google Scholar
Rasmussen SK, Shu X. Quantification of amylose, amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Crop Sci Hortic. 2014;5:197.
Google Scholar
Shu X, Backes G, Rasmussen SK. Genome-wide association study of resistant starch (RS) phenotypes in a barley variety collection. J Agric Food Chem. 2012;60:10302–11.
Article
CAS
PubMed
Google Scholar
Sukumaran S, Xiang W, Bean SR, Pedersen JF, Kresovich S, Tuinstra MR, et al. Association mapping for grain quality in a diverse sorghum collection. Plant Genome J. 2012;5:126–35.
Article
CAS
Google Scholar
de Alencar Figueiredo LF, Sine B, Chantereau J, Mestres C, Fliedel G, Rami J-F, et al. Variability of grain quality in sorghum: association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2. Theor Appl Genet. 2010;121:1171–85.
Article
Google Scholar
Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, et al. Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci. 2008;48:2165–79.
Article
Google Scholar
Hamblin MT, Salas Fernandez MG, Tuinstra MR, Rooney WL, Kresovich S. Sequence variation at candidate loci in the starch metabolism pathway in sorghum: prospects for linkage disequilibrium mapping. Crop Sci. 2007;47:S-125–34.
Article
Google Scholar
Rami J-F, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, et al. Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet. 1998;97:605–16.
Article
CAS
Google Scholar
McIntyre CL, Drenth J, Gonzalez N, Henzell RG, Jordan DR. Molecular characterization of the waxy locus in sorghum. Genome. 2008;51:524–33.
Article
CAS
PubMed
Google Scholar
Rhodes DH, Hoffmann L, Rooney WL, Ramu P, Morris GP, Kresovich S. Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] Germplasm. J Agric Food Chem. 2014;62:10916–27.
Article
CAS
PubMed
Google Scholar
Shakoor N, Ziegler G, Dilkes BP, Brenton Z, Boyles R, Connolly EL, et al. Integration of experiments across diverse environments identifies the genetic determinants of variation in Sorghum bicolor seed element composition. Plant Physiol. 2016;170:1989–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seleka TB, Jackson JC, Batsetswe L, Kebakile PG. Small-scale milling and the feasibility of mandatory fortification of sorghum and maize flour in Botswana. Dev South Afr. 2011;28:461–76.
Article
Google Scholar
Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W. Biofortification of staple food crops. J Nutr. 2006;136:1064–7.
CAS
PubMed
Google Scholar
Horton S. The economics of food fortification. J Nutr. 2006;136:1068–71.
CAS
PubMed
Google Scholar
Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, Paterson AH, et al. Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats. Theor Appl Genet. 2005;111:23–30.
Article
CAS
PubMed
Google Scholar
Harlan JR, Wet D, J JM. A simplified classification of cultivated sorghum. Crop Sci. 1972;12:172–6.
Germplasm Resources Information Network. USDA National Genetic Resources Program. 2016. http://www.ars-grin.gov. Accessed 04 July 2016.
Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, et al. Genome-environment associations in sorghum landraces predict adaptive traits. Sci Adv. 2015;1:e1400218.
Article
PubMed
PubMed Central
Google Scholar
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28:2397–9.
Article
CAS
PubMed
Google Scholar
Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–8.
Article
CAS
PubMed
Google Scholar
Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010;42:355–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Google Scholar
Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: A High capacity genotyping by sequencing analysis pipeline. PLoS One. 2014;9:e90346.
Article
PubMed
PubMed Central
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–86.
Article
CAS
PubMed
Google Scholar
Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet. 2008;40:1370–4.
Article
CAS
PubMed
Google Scholar
Holdsworth MJ, Bentsink L, Soppe WJJ. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 2008;179:33–54.
Article
CAS
PubMed
Google Scholar
Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J. 2008;54:608–20.
Article
CAS
PubMed
Google Scholar
Davidson RM, Gowda M, Moghe G, Lin H, Vaillancourt B, Shiu S-H, et al. Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution. Plant J. 2012;71:492–502.
CAS
PubMed
Google Scholar
Duodu K, Taylor JR, Belton P, Hamaker B. Factors affecting sorghum protein digestibility. J Cereal Sci. 2003;38:117–31.
Article
CAS
Google Scholar
Mace ES, Jordan DR. Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet. 2011;123:169–91.
Article
CAS
PubMed
Google Scholar
Whan A, Dielen A-S, Mieog J, Bowerman AF, Robinson HM, Byrne K, et al. Engineering α-amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development. J Exp Bot. 2014;65:5443–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beta T, Corke H. Genetic and environmental variation in sorghum starch properties. J Cereal Sci. 2001;34:261–8.
Article
CAS
Google Scholar
Yang G, Dong Y, Li Y, Wang Q, Shi Q, Zhou Q. Verification of QTL for grain starch content and its genetic correlation with oil content using two connected RIL populations in high-oil maize. PLoS One. 2013;8:e53770.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Wang Y, Wei M, Li X, Fu J. QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.). J Genet. 2009;88:61–7.
Article
PubMed
Google Scholar
Zhang J, Lu XQ, Song XF, Yan JB, Song TM, Dai JR, et al. Mapping quantitative trait loci for oil, starch, and protein concentrations in grain with high-oil maize by SSR markers. Euphytica. 2008;162:335–44.
Article
CAS
Google Scholar
Panthee DR, Pantalone VR, West DR, Saxton AM, Sams CE. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci. 2005;45:2015–22.
Article
CAS
Google Scholar