Cai S, Yu G, Chen X, Huang Y, Jiang X, Zhang G, Jin X. Grain protein content variation and its association analysis in barley. BMC Plant Biol. 2013;13:35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorjanovic S. A review: the role of barley seed pathogenesis-related proteins (PRs) in beer production. J Inst Brew. 2009;116:111–24.
Google Scholar
Shewry PR. Barley seed proteins. In: Macgrego AW, Bhatty RS, editors. Barley: chemistry and technology. St. Paul: American Association of Cereal Chemists; 1993. p. 131–97.
Google Scholar
Flengsrud R. Separation of acidic barley endosperm proteins by two-dimensional electrophoresis. Electrophoresis. 1993;14:1060–6.
Article
CAS
PubMed
Google Scholar
Gorg A, Postel W, Baumer M, Weiss W. Two-dimensional polyacrylamide gel electrophoresis, with immobilized pH gradients in the first dimension, of barley seed proteins: discrimination of cultivars with different malting grades. Electrophoresis. 1992;13:192–203.
Article
CAS
PubMed
Google Scholar
Kristoffersen HE, Flengsrud R. Separation and characterization of basic barley seed proteins. Electrophoresis. 2000;21:3693–700.
Article
CAS
PubMed
Google Scholar
Weiss W, Postel W, Gorg A. Barley cultivar discrimination: I. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and glycoprotein blotting. Electrophoresis. 1991;12:323–30.
Article
CAS
PubMed
Google Scholar
Weiss W, Postel W, Gorg A. Application of sequential extraction procedures and glycoprotein blotting for the characterization of the 2-D polypeptide patterns of barley seed proteins. Electrophoresis. 1992;13:770–3.
Article
CAS
PubMed
Google Scholar
Finnie C, Svensson B. Barley seed proteomics from spots to structures. J Proteomics. 2009;72:315–24.
Article
CAS
PubMed
Google Scholar
Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K. Gel-based and gel-free quantitative proteomics approaches at a glance. Int J Plant Genomics. 2012;2012:494572.
Article
PubMed
PubMed Central
Google Scholar
Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics. 2011;11:535–53.
Article
CAS
PubMed
Google Scholar
Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science. 2008;320:938–41.
Article
CAS
PubMed
Google Scholar
Stulemeijer IJ, Joosten MH, Jensen ON. Quantitative phosphoproteomics of tomato mounting a hypersensitive response reveals a swift suppression of photosynthetic activity and a differential role for hsp90 isoforms. J Proteome Res. 2009;8:1168–82.
Article
CAS
PubMed
Google Scholar
Komatsu S, Wada T, Abalea Y, Nouri MZ, Nanjo Y, Nakayama N, Shimamura S, Yamamoto R, Nakamura T, Furukawa K. Analysis of plasma membrane proteome in soybean and application to flooding stress response. J Proteome Res. 2009;8:4487–99.
Article
CAS
PubMed
Google Scholar
Kaspar S, Matros A, Mock HP. Proteome and flavonoid analysis reveals distinct responses of epidermal tissue and whole leaves upon UV-B radiation of barley (Hordeum vulgare L.) seedlings. J Proteome Res. 2010;9:2402–11.
Article
CAS
PubMed
Google Scholar
Morton KJ, Jia S, Zhang C, Holding DR. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins. J Exp Bot. 2016;67:1381–96.
Article
CAS
PubMed
Google Scholar
Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, et al. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci U S A. 2007;104:1424–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burger WC, Laberge DE. Malting and brewing quality. In: Rasmusson DC, editor. Barley. Madison: American Society of Agronomy; 1985. p. 367–401.
Google Scholar
Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S, Zenezini Chiozzi R, Lagana A. Protein profile of mature soybean seeds and prepared soybean milk. J Agric Food Chem. 2014;62:9893–9.
Article
CAS
PubMed
Google Scholar
Capriotti AL, Cavaliere C, Piovesana S, Stampachiacchiere S, Ventura S, Zenezini Chiozzi R, Lagana A. Characterization of quinoa seed proteome combining different protein precipitation techniques: Improvement of knowledge of nonmodel plant proteomics. J Sep Sci. 2015;38:1017–25.
Article
CAS
PubMed
Google Scholar
Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D, Ulaszek R, Wei J, et al. Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci U S A. 2002;99:11969–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah M, Soares EL, Lima ML, Pinheiro CB, Soares AA, Domont GB, Nogueira FC, Campos FA. Deep proteome analysis of gerontoplasts from the inner integument of developing seeds of Jatropha curcas. J Proteomics. 2016;143:346–52.
Article
CAS
PubMed
Google Scholar
Laugesen S, Bak-Jensen KS, Hagglun P, Henrikson A, Finnie C, Roepstorff P, Svensson B. Barely peroxidase isozymes. Expression and post-translational modification in mature seeds as identified by two-dimensional gel electrophoresis and mass spectrometry. Int J Mass Spectrom. 2007;268:244–53.
Article
CAS
Google Scholar
Hynek R, Svensson B, Jensen ON, Barkholt V, Finnie C. Enrichment and identification of integral membrane proteins from barley aleurone layers by reversed-phase chromatography, SDS-PAGE, and LC-MS/MS. J Proteome Res. 2006;5:3105–13.
Article
CAS
PubMed
Google Scholar
Yang Y, Dai L, Xia H, Zhu K, Liu H, Chen K. Protein profile of rice (Oryza sativa) seeds. Genet Mol Biol. 2013;36:87–92.
Article
PubMed
PubMed Central
Google Scholar
Ostergaard O, Finnie C, Laugesen S, Roepstorff P, Svensson B. Proteome analysis of barley seeds: identification of major proteins from two-dimensional gels (pI 4–7). Proteomics. 2004;4:2437–47.
Article
CAS
PubMed
Google Scholar
Hu Z-L, Bao J, Reecy JM. CateGOrizer: a web-based program to batch analyze gene ontology classification categories. Onl J Bioinform. 2008;9:108–12.
Google Scholar
Dure L, Waters L. Long-lived messenger Rna: evidence from cotton seed germination. Science. 1965;147:410–2.
Article
CAS
PubMed
Google Scholar
Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D. The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol. 2004;134:1598–613.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38(Web Server issue):W64–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oracz K, El-Maarouf Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 2007;50:452–65.
Article
CAS
PubMed
Google Scholar
Gomes MP, Garcia QS. Reactive oxygen species and seed germination. Biologia. 2013;68:351–7.
CAS
Google Scholar
Lu TC, Meng LB, Yang CP, Liu GF, Liu GJ, Ma W, Wang BC. A shotgun phosphoproteomics analysis of embryos in germinated maize seeds. Planta. 2008;228:1029–41.
Article
CAS
PubMed
Google Scholar
Han C, Wang K, Yang P. Gel-based comparative phosphoproteomic analysis on rice embryo during germination. Plant Cell Physiol. 2014;55:1376–94.
Article
CAS
PubMed
Google Scholar
Romero-Rodriguez MC, Abril N, Sanchez-Lucas R, Jorrin-Novo JV. Multiplex staining of 2-DE gels for an initial phosphoproteome analysis of germinating seeds and early grown seedlings from a non-orthodox specie: Quercus ilex L. subsp. ballota [Desf.] Samp. Front Plant Sci. 2015;6:620.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Li Y, Lo SW, Hillmer S, Sun SS, Robinson DG, Jiang L. Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies. Plant Physiol. 2007;143:1628–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H, Sadygov RG, Yates 3rd JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004;76:4193–201.
Article
CAS
PubMed
Google Scholar
Sanchez de la Hoz P, Vicente-Carbajosa J, Mena M, Carbonero P. Homologous sucrose synthase genes in barley (Hordeum vulgare) are located in chromosomes 7H (syn. 1) and 2H. Evidence for a gene translocation? FEBS Lett. 1992;310:46–50.
Article
CAS
PubMed
Google Scholar
Martinez de Ilarduya O, Vicente-Carbajosa J, Sanchez de la Hoz P, Carbonero P. Sucrose synthase genes in barley. cDNA cloning of the Ss2 type and tissue-specific expression of Ss1 and Ss2. FEBS Lett. 1993;320:177–81.
Article
CAS
PubMed
Google Scholar
Allison MJ. Relationships between milling energy and hot water extract values of malts from some modern barleys and their parental cultivars. J Inst Brew. 1986;92:604–7.
Article
CAS
Google Scholar
Giroux MJ, Morris CF. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci U S A. 1998;95:6262–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenwell P, Schofield JD. A starch granule protein associated with endopserm softness in wheat. Cereal Chem. 1986;63:379–90.
CAS
Google Scholar
Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M. Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet. 1996;93:580–6.
Article
CAS
PubMed
Google Scholar
Beecher B, Bowman J, Martin JM, Bettge AD, Morris CF, Blake TK, Giroux MJ. Hordoindolines are associated with a major endosperm-texture QTL in barley (Hordeum vulgare). Genome. 2002;45:584–91.
Article
CAS
PubMed
Google Scholar
Darlington HF, Rouster J, Hoffmann L, Halford NG, Shewry PR, Simpson DJ. Identification and molecular characterisation of hordoindolines from barley grain. Plant Mol Biol. 2001;47:785–94.
Article
CAS
PubMed
Google Scholar
Takahashi A, Ikeda TM, Takayama T, Yanagisawa T. A barley Hordoindoline mutation resulted in an increase in grain hardness. Theor Appl Genet. 2010;120:519–26.
Article
CAS
PubMed
Google Scholar
Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75:4646–58.
Article
CAS
PubMed
Google Scholar
Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, Samatova NF. Detecting differential and correlated protein expression in label-free shotgun proteomics. J Proteome Res. 2006;5:2909–18.
Article
CAS
PubMed
Google Scholar
Ostergaard O, Melchior S, Roepstorff P, Svensson B. Initial proteome analysis of mature barley seeds and malt. Proteomics. 2002;2:733–9.
Article
CAS
PubMed
Google Scholar
Finnie C, Steenholdt T, Roda Noguera O, Knudsen S, Larsen J, Brinch-Pedersen H, Bach Holm P, Olsen O, Svensson B. Environmental and transgene expression effects on the barley seed proteome. Phytochemistry. 2004;65:1619–27.
Article
CAS
PubMed
Google Scholar
Witzel K, Surabhi GK, Jyothsnakumari G, Sudhakar C, Matros A, Mock HP. Quantitative proteome analysis of barley seeds using ruthenium(II)-tris-(bathophenanthroline-disulphonate) staining. J Proteome Res. 2007;6:1325–33.
Article
CAS
PubMed
Google Scholar
Perrocheau L, Rogniaux H, Boivin P, Marion D. Probing heat-stable water-soluble proteins from barley to malt and beer. Proteomics. 2005;5:2849–58.
Article
CAS
PubMed
Google Scholar
Boren M, Larsson H, Falk A, Jansson C. The barley starch granule proteome - internalized granule polypeptides of the mature endosperm. Plant Sci. 2004;166:617–26.
Article
CAS
Google Scholar
Bonsager BC, Finnie C, Roepstorff P, Svensson B. Spatio-temporal changes in germination and radical elongation of barley seeds tracked by proteome analysis of dissected embryo, aleurone layer, and endosperm tissues. Proteomics. 2007;7:4528–40.
Article
PubMed
Google Scholar