Houde A, Kademi A, Leblanc D. Lipases and their industrial applications. Appl Biochem Biotechnol. 2004;118:155–70.
Article
CAS
PubMed
Google Scholar
Vaquero ME, Barriuso J, Martinez MJ, Prieto A. Properties, structure, and applications of microbial sterol esterases. Appl Microbiol Biotechnol. 2016;100:2047–61.
Article
CAS
PubMed
Google Scholar
Gutiérrez-Fernández J, Vaquero ME, Prieto A, Barriuso J, Martinez MJ, Hermoso JA. Crystal structures of Ophiostoma piceae sterol esterase: Structural insights into activation mechanism and product release. J Struct Biol. 2014;187:215–22.
Article
PubMed
Google Scholar
Singh AK, Mukhopadhyay M. Overview of fungal lipase: a review. Appl Biochem Biotechnol. 2012;166:486–520.
Article
CAS
PubMed
Google Scholar
Pleiss J, Fischer M, Peiker M, Thiele C, Schmid RD. Lipase engineering database–Understanding and exploiting sequence-structure-function relationships. J Mol Catal B-Enz. 2000;10:491–508.
Article
CAS
Google Scholar
Barriuso J, Vaquero ME, Prieto A, Martínez MJ. Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review. Biotechnol Adv. 2016. doi:10.1016/j.biotechadv.2016.05.004. S0734-9750(16)30059-3.
Mancheño JM, Pernas MA, Martínez MJ, Ochoa B, Rua ML, Hermoso JA. Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97A resolution. J Mol Biol. 2003;332:1059–69.
Article
PubMed
Google Scholar
Barriuso J, Prieto A, Martinez MJ. Fungal genomes mining to discover novel sterol esterases and lipases as catalysts. BMC Genomics. 2013;14:712.
Article
CAS
PubMed
PubMed Central
Google Scholar
Juniper BE, Jeffree CE. Plant Surfaces. London: Edward Arnold; 1983.
Google Scholar
Zorn H, Bouws H, Takenberg M, Nimtz M, Getzlaff R, Breithaupt DE, Berger RG. An extracellular carboxylesterase from the basidiomycete Pleurotus sapidus hydrolyses xanthophyll esters. Biol Chem. 2005;386:435–40.
Article
CAS
PubMed
Google Scholar
Barriuso J, Martínez MJ. In silico metagenomes mining to discover novelesterases with industrial application by sequential search strategies. J Microbiol Biotechnol. 2015;25(5):732–7.
Article
CAS
PubMed
Google Scholar
Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;29(336):1715–9.
Article
Google Scholar
Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A. Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol. 2009;20:348–57.
Article
PubMed
Google Scholar
Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet. 2015;47(4):410–5.
Article
CAS
PubMed
Google Scholar
Hibbett DS. A phylogenetic overview of the Agaricomycotina. Mycologia. 2006;98(6):917–25.
Article
PubMed
Google Scholar
Thornton JW. Resurrecting ancient genes: experimental analysis of extinct molecules. Nat Rev Genet. 2004;5(5):366–75.
Article
CAS
PubMed
Google Scholar
Merkl R, Sterner R. Ancestral protein reconstruction: techniques and applications. Biol Chem. 2016;397(1):1–21.
Article
CAS
PubMed
Google Scholar
Thornton JW. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc Natl Acad Sci U S A. 2001;8(98):5671–6.
Article
Google Scholar
Bridgham JT, Carroll SM, Thornton JW. Evolution of hormone-receptor complexity by molecular exploitation. Science. 2006;7(312):97–101.
Article
Google Scholar
Yokoyama S, Radlwimmer FB. The molecular genetics and evolution of red and green color vision in vertebrates. Genetics. 2001;158:1697–710.
CAS
PubMed
PubMed Central
Google Scholar
Ugalde JA, Chang BS, Matz MV. Evolution of coral pigments recreated. Science. 2004;3(305):1433.
Article
Google Scholar
Konno A, Kitagawa A, Watanabe M, Ogawa T, Shirai T. Tracing protein evolution through ancestral structures of fish galectin. Structure. 2011;11(19):711–21.
Article
Google Scholar
Gaucher EA, Thomson JM, Burgan MF, Benner SA. Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature. 2003;425:285–8.
Article
CAS
PubMed
Google Scholar
Gaucher EA, Govindarajan S, Ganesh OK. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature. 2008;451:704–7.
Article
CAS
PubMed
Google Scholar
Malcolm BA, Wilson KP, Matthews BW, Kirsch JF, Wilson AC. Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature. 1990;345(6270):86–9.
Article
CAS
PubMed
Google Scholar
Stackhouse J, Presnell SR, McGeehan GM, Nambiar KP, Benner SA. The ribonuclease from an extinct bovid ruminant. FEBS Lett. 1990;262(1):104–6.
Article
CAS
PubMed
Google Scholar
Jermann TM, Opitz JG, Stackhouse J, Benner SA. Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature. 1995;374(6517):57–9.
Article
CAS
PubMed
Google Scholar
Chandrasekharan UM, Sanker S, Glynias MJ, Karnik SS, Husain A. Angiotensin II-forming activity in a reconstructed ancestral chymase. Science. 1996;271(5248):502–5.
Article
CAS
PubMed
Google Scholar
Zhang J, Rosenberg HF. Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates. Proc Natl Acad Sci U S A. 2002;99(8):5486–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, Aris JP, Benner SA. Resurrecting ancestral alcohol dehydrogenases from yeast. Nat Genet. 2005;37(6):630–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez-Jimenez R, Inglés-Prieto A, Zhao ZM, Sanchez-Romero I, Alegre-Cebollada J, Kosuri P, Garcia-Manyes S, Kappock TJ, Tanokura M, Holmgren A, et al. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat Struct Mol Biol. 2011;18(5):592–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huelsenbeck JP, Bollback JP. Empirical and hierarchical Bayesian estimation of ancestral states. Syst Biol. 2001;50(3):351–66.
Article
CAS
PubMed
Google Scholar
Eck RV, Dayhoff MO. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science. 1966;152:363–6.
Article
CAS
PubMed
Google Scholar
Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.
Article
CAS
PubMed
Google Scholar
Pupko T, Peer I, Shamir R, Graur D. A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol Biol Evol. 2000;17:890–6.
Article
CAS
PubMed
Google Scholar
Cai W, Pei J, Grishin NV. Reconstruction of ancestral protein sequences and its applications. BMC Evol Biol. 2004;4:33.
Article
PubMed
PubMed Central
Google Scholar
Edwards RJ, Shields DC. GASP: Gapped ancestral sequence prediction for proteins. BMC Bioinformatics. 2004;5:123.
Article
PubMed
PubMed Central
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Article
CAS
PubMed
Google Scholar
Kozlikova B, Sebestova E, Sustr V, Brezovsky J, Strnad O, Daniel L, Bednar D, Pavelka A, Manak M, Bezdeka M, et al. CAVER Analyst 1.0: graphic tool for interactive visualization and analysis of tunnels and channels in protein structures. Bioinformatics. 2014;30(18):2684–5.
Article
CAS
PubMed
Google Scholar
Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21(9):2104–5.
Article
CAS
PubMed
Google Scholar
Nagy LG, Riley R, Tritt A, Adam C, Daum C, Floudas D, Sun H, Yadav JS, Pangilinan J, Larsson KH, et al. Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities. Mol Biol Evol. 2016;33(4):959–70.
Article
CAS
PubMed
Google Scholar
Hori C, Ishida T, Igarashi K, Samejima M, Suzuki H, Master E, Ferreira P, Ruiz-Dueñas FJ, Held B, Canessa P, et al. Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome providesinsight into its pioneer colonization strategies of wood. PLoS Genet. 2014;10(12):e1004759.
Article
PubMed
PubMed Central
Google Scholar
Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478(7367):49–56.
Article
CAS
PubMed
Google Scholar
Marmeisse R, Guidot A, Gay G, Lambilliotte R, Sentenac H, Combier JP, Melayah D, Fraissinet-Tachet L, Debaud JC. Hebeloma cylindrosporum - a model species to study ectomycorrhizal symbiosis from gene to ecosystem. New Phytol. 2004;163:481–98.
Article
CAS
Google Scholar
Malloch DW, Pirozynski KA, Raven PH. Ecological and evolutionary significance of mycorrhizal symbiosis in vascular plants (a review). Proc Natl Acad Sci U S A. 1980;77:2113–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foresti ML, Ferreira ML. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption. Biomacromolecules. 2004;5:2366–75.
Article
CAS
PubMed
Google Scholar
Hanson–Smith V, Kolaczkowski B, Thornton JW. Robustness of ancestral sequence reconstruction to phylogenetic uncertainty. Mol Biol Evol. 2010;27(9):1988–99.
Article
PubMed
PubMed Central
Google Scholar
Khersonsky O, Tawfik DS. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem. 2010;79:471–505.
Article
CAS
PubMed
Google Scholar
Risso VA, Gavira JA, Mejia-Carmona DF, Gaucher EA, Sanchez-Ruiz JM. Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian beta-lactamases. J Am Chem Soc. 2013;135:2899–902.
Article
CAS
PubMed
Google Scholar