Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet. 2016;4:438–46.
Article
Google Scholar
Gomes RLF, Lopes ÂCDA. Correlations and path analysis in peanut. Crop Breed Appl Biotehnol. 2005;1:105–12.
Article
Google Scholar
Chen W, Jiao Y, Cheng L, Huang L, Liao B, Tang M, et al. Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genet. 2016;1:25.
Article
Google Scholar
Selvaraj MG, Narayana M, Schubert AM, Ayers JL, Baring MR, Burow MD. Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotechnol. 2009;2:10.
Google Scholar
Janila P, Variath MT, Pandey MK, Desmae H, Motagi BN, Okori P, et al. Genomic tools in groundnut breeding program: status and perspectives. Front Plant Sci. 2016;7:289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gondo T, Sato S, Okumura K, Tabata S, Akashi R, Isobe S. Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. Genome. 2007;7:627–37.
Google Scholar
Zhang G, Zhou W. Genetic analyses of agronomic and seed quality traits of synthetic oilseed Brassica napus produced from interspecific hybridization of B. campestris and B. oleracea. J Genet. 2006;1:45–51.
Article
Google Scholar
Shoha D, Manivannan N, Vindhiyavarman P, Nigam SN. Identification of quantitative trait loci (Qtl) for Late leaf spot disease resistance in groundnut (Arachis Hypogaea L.). Legum Res. 2013;5:467–72.
Google Scholar
Leal-Bertioli SC, Moretzsohn MC, Roberts PA, Ballen-Taborda C, Borba TC, Valdisser PA, et al. Genetic mapping of resistance to Meloidogyne arenaria in Arachis stenosperma: a new source of nematode resistance for peanut. G3. 2015;2:377–90.
Google Scholar
Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, et al. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet. 2011;6:1119–32.
Article
Google Scholar
Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, et al. Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed. 2012;2:757–72.
Article
Google Scholar
Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, et al. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet. 2014;15:133.
Article
PubMed
PubMed Central
Google Scholar
Mondal S, Phadke RR, Badigannavar AM. Genetic variability for total phenolics, flavonoids and antioxidant activity of testaless seeds of a peanut recombinant inbred line population and identification of their controlling QTLs. Euphytica. 2015;2:311–21.
Article
Google Scholar
Faye I, Pandey MK, Hamidou F, Rathore A, Ndoye O, Vadez V, et al. Identification of quantitative trait loci for yield and yield related traits in groundnut (Arachis hypogaea L.) under different water regimes in Niger and Senegal. Euphytica. 2015;3:631–47.
Article
Google Scholar
Huang L, He HY, Chen WG, Ren XP, Chen YN, Zhou XJ, et al. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet. 2015;6:1103–15.
Article
Google Scholar
Sukruth M, Paratwagh SA, Sujay V, Kumari V, Gowda MVC, Nadaf HL, et al. Validation of markers linked to late leaf spot and rust resistance, and selection of superior genotypes among diverse recombinant inbred lines and backcross lines in peanut (Arachis hypogaea L.). Euphytica. 2015;2:343–51.
Article
Google Scholar
Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H, Gowda MV, et al. Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet. 2014;8:1771–81.
Article
Google Scholar
Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, et al. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol. 2012;12:80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fonceka D, Tossim HA, Rivallan R, Vignes H, Faye I, Ndoye O, et al. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol. 2012;12:26.
Article
PubMed
PubMed Central
Google Scholar
Jiang H, Duan N, Ren X. Descriptors and data standard for peanut (Arachis spp.). Beijing: China Agriculture Press; 2006.
Google Scholar
IBM Corp. Statistical Package for Social Sciences (IBM SPSS) 22.0 version. Armonk: IBM United States; 2013. Accessed.
Google Scholar
Holl JB, Nyquist WE. Estimating and interpreting heritability for plant breeding: an update. In: Janick J, editor. Plant breeding reviews, vol. 22. 2010. p. 9–112.
Google Scholar
Wang H, Penmetsa RV, Yuan M, Gong L, Zhao Y, Guo B, et al. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biol. 2012;1:1–11.
Google Scholar
Macedo SE, Moretzsohn MC, Leal-Bertioli SC, Alves DM, Gouvea EG, Azevedo VC, et al. Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut. BMC Res Notes. 2012;5:86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, et al. Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed. 2012;1:125–38.
Article
Google Scholar
Nagy ED, Chu Y, Guo Y, Khanal S, Tang S, Li Y, et al. Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breed. 2010;2:357–70.
Article
Google Scholar
Moretzsohn MC, Barbosa AV, Alves-Freitas DM, Teixeira C, Leal-Bertioli SC, Guimaraes PM, et al. A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol. 2009;9:40.
Article
PubMed
PubMed Central
Google Scholar
Leal-Bertioli SC, Jose AC, Alves-Freitas DM, Moretzsohn MC, Guimaraes PM, Nielen S, et al. Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol. 2009;9:112.
Article
PubMed
PubMed Central
Google Scholar
Guo B, Chen X, Hong Y, Liang X, Dang P, Brenneman T, et al. Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Int J Plant Genomics. 2009;2009:14.
Article
Google Scholar
Naito Y, Suzuki S, Iwata Y, Kuboyama T. Genetic diversity and relationship analysis of peanut germplasm using SSR markers. Breed Sci. 2008;3:293–300.
Article
Google Scholar
Cuc LM, Mace ES, Crouch JH, Quang VD, Long TD, Varshney RK. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol. 2008;1:1–11.
Google Scholar
Gimenes MA, Hoshino AA, Barbosa AV, Palmieri DA, Lopes CR. Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol. 2007;7:9.
Article
PubMed
PubMed Central
Google Scholar
Moretzsohn MC, Leoi L, Proite K, Guimaraes PM, Leal-Bertioli SC, Gimenes MA, et al. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet. 2005;6:1060–71.
Article
Google Scholar
Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, et al. Microsatellite identification and characterization in peanut ( A. hypogaea L.). Theor Appl Genet. 2004;6:1064–70.
Article
Google Scholar
He G, Meng R, Newman M, Gao G, Pittman RN, Prakash C. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol. 2003;1:1–6.
Article
CAS
Google Scholar
Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, et al. Discovery and characterization of polymorphic Simple Sequence Repeats (SSRs) in peanut. Crop Sci. 1999;4:1243–7.
Article
Google Scholar
Huang L, Wu B, Zhao J, Li H, Chen W, Zheng Y, et al. Characterization and transferable utility of microsatellite markers in the wild and cultivated Arachis species. PLoS One. 2016;5:15.
Google Scholar
Zhou X, Dong Y, Zhao J, Huang L, Ren X, Chen Y, et al. Genomic survey sequencing for development and validation of single-locus SSR markers in peanut (Arachis hypogaea L.). BMC Genomics. 2016;1:420.
Article
Google Scholar
Doyle J. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5.
Google Scholar
Fountain JC, Qin H, Chen C, Dang P, Wang ML, Guo B. A note on development of a low-cost and high-throughput SSR-based genotyping method in peanut (Arachis hypogaea L.). Peanut Science. 2011;2:122–7.
Article
Google Scholar
JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Wageningen: Kyazma B.V; 2006. Accessed.
Google Scholar
Kosambi DD. The estimation of map distances from recombination values. Ann Hum Genet. 2011;1:172–5.
Google Scholar
Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SC, Thudi M, et al. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res. 2013;2:173–84.
Article
Google Scholar
Zhou XJ, Xia YL, Ren XP, Chen YL, Huang L, Huang SM, et al. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics. 2014;15:14.
Article
Google Scholar
Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;1:77–8.
Article
Google Scholar
Zeng ZB. Precision mapping of quantitative trait loci. Genetics. 1994;4:1457–68.
Google Scholar
Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. 2012. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed 1 Dec 2015.
Google Scholar
Udall JA, Quijada PA, Lambert B, Osborn TC. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet. 2006;4:597–609.
Article
Google Scholar
Wu Y, Bhat PR, Close TJ, Lonardi S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. 2008;10:11.
Google Scholar
Preedy KF, Hackett CA. A rapid marker ordering approach for high-density genetic linkage maps in experimental autotetraploid populations using multidimensional scaling. Theor Appl Genet. 2016;11:2117–32.
Article
Google Scholar
Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, et al. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet. 2012;4:653–64.
Article
Google Scholar