Crouch J, O’Connell R, Gan P, Buiate E, Torres MF, Beirn L, Shirasu K, Vaillancourt L. The genomics of Colletotrichum. In: Genomics of Plant-Associated Fungi: Monocot Pathogens. Berlin-Heidelberg: Springer; 2014. 69-102.
Google Scholar
Dean R, Van Kan JA, Pretorius ZA, Hammond‐Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414–30.
Google Scholar
Hyde K, Cai L, Cannon P, Crouch J, Crous P, Damm U, Goodwin P, Chen H, Johnston P, Jones E. Colletotrichum—names in current use. Fungal Divers. 2009;39(1):147–82.
Google Scholar
Sutton B. The appressoria of Colletotrichum graminicola and C. falcatum. Can J Bot. 1968;46(7):873–6.
Google Scholar
Vaillancourt LJ, Hanau RM. Genetic and morphological comparisons of Glomerella (Colletotrichum) isolates from maize and from sorghum. Exp Mycol. 1992;16(3):219–29.
Google Scholar
Jamil F, Nicholson R. Susceptibility of corn to isolates of Colletotrichum graminicola pathogenic to other grasses. Plant Dis. 1987;71(9):809–10.
Google Scholar
Sherriff C, Whelan M, Arnold G, Bailey J. rDNA sequence analysis confirms the distinction between Colletotrichum graminicola and C. sublineolum. Mycol Res. 1995;99(4):475–8.
CAS
Google Scholar
Du M, Schardl CL, Nuckles EM, Vaillancourt LJ. Using mating-type gene sequences for improved phylogenetic resolution of Colletotrichum species complexes. Mycologia. 2005;97(3):641–58.
CAS
PubMed
Google Scholar
Crouch JA, Clarke BB, Hillman BI. Unraveling evolutionary relationships among the divergent lineages of Colletotrichum causing anthracnose disease in turfgrass and corn. Phytopathology. 2006;96(1):46–60.
CAS
PubMed
Google Scholar
Crouch JA, Clarke BB, White JF, Hillman BI. Systematic analysis of the falcate-spored graminicolous Colletotrichum and a description of six new species from warm-season grasses. Mycologia. 2009;101(5):717–32.
PubMed
Google Scholar
Swigoňová Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J. Close split of sorghum and maize genome progenitors. Genome Res. 2004;14(10a):1916–23.
PubMed
PubMed Central
Google Scholar
Dale J. Corn anthracnose. Plant Dis Rep. 1963;47:245–9.
Google Scholar
LeBeau F. The eradicant action of a fungicide on the Colletotrichum-Lilii in lily bulbs, vol. 36. St. Paul: American Phytopathological Society 3340 pilot knob road; 1946. p. 391–3.
Google Scholar
Williams L, Willis G. Disease of corn caused by Colletotrichum graminicolum. Phytopathology. 1963;53(3):364–5.
Google Scholar
Venard C, Vaillancourt L. Penetration and colonization of unwounded maize tissues by the maize anthracnose pathogen Colletotrichum graminicola and the related nonpathogen C. sublineolum. Mycologia. 2007;99(3):368–77.
CAS
PubMed
Google Scholar
Torres MF, Cuadros DF, Vaillancourt LJ. Evidence for a diffusible factor that induces susceptibility in the Colletotrichum–maize disease interaction. Mol Plant Pathol. 2014;15(1):80–93.
PubMed
Google Scholar
Chowdhury SC. A disease of Zea mays caused by Colletotrichum graminicola [Ces.] Wils. Indian J Agric Sci. 1936;6:833–43.
CAS
Google Scholar
Wheeler H, Politis D, Poneleit C. Pathogenicity, host range, and distribution of Colletotrichum graminicola on corn. Phytopathology. 1974;64(3):293–6.
Google Scholar
Kroken S, Glass NL, Taylor JW, Yoder O, Turgeon BG. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci. 2003;100(26):15670–5.
CAS
PubMed
Google Scholar
Condon BJ, Leng Y, Wu D, Bushley KE, Ohm RA, Otillar R, Martin J, Schackwitz W, Grimwood J, MohdZainudin N. Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet. 2013;9(1):e1003233.
CAS
PubMed
PubMed Central
Google Scholar
Ito K, Tanaka T, Hatta R, Yamamoto M, Akimitsu K, Tsuge T. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Mol Microbiol. 2004;52(2):399–411.
CAS
PubMed
Google Scholar
Tyler BM. Entering and breaking: virulence effector proteins of oomycete plant pathogens. Cell Microbiol. 2009;11(1):13–20.
CAS
PubMed
Google Scholar
de Jonge R, Bolton MD, Thomma BP. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr Opin Plant Biol. 2011;14(4):400–6.
PubMed
Google Scholar
Donofrio NM, Raman V. Roles and delivery mechanisms of fungal effectors during infection development: common threads and new directions. Curr Opin Microbiol. 2012;15(6):692–8.
PubMed
Google Scholar
Baroncelli R, Amby DB, Zapparata A, Sarrocco S, Vannacci G, Le Floch G, Harrison RJ, Holub E, Sukno SA, Sreenivasaprasad S. Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genomics. 2016;17(1):1.
Google Scholar
Bentley S, Chater K, Cerdeno-Tarraga A-M, Challis G, Thomson N, James K, Harris D, Quail M, Kieser H, Harper D. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature. 2002;417(6885):141–7.
PubMed
Google Scholar
Birch A. Biosynthesis of polyketides and related compounds. Science. 1967;156(3772):202–6.
CAS
PubMed
Google Scholar
Lee S-L, Floss HG, Heinstein P. Purification and properties of dimethylallylpyrophosphate: Tryptophan dimethylallyl transferase, the first enzyme of ergot alkaloid biosynthesis in Claviceps. sp. SD 58. Arch Biochem Biophys. 1976;177(1):84–94.
CAS
PubMed
Google Scholar
McAlpine JB, Bachmann BO, Piraee M, Tremblay S, Alarco A-M, Zazopoulos E, Farnet CM. Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J Nat Prod. 2005;68(4):493–6.
CAS
PubMed
Google Scholar
Martin JF, Liras P. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol. 1989;43(1):173–206.
CAS
PubMed
Google Scholar
Ellis JG, Rafiqi M, Gan P, Chakrabarti A, Dodds PN. Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol. 2009;12(4):399–405.
CAS
PubMed
Google Scholar
van der Hoorn RA, Kamoun S. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell. 2008;20(8):2009–17.
PubMed
PubMed Central
Google Scholar
Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I. Metabolic priming by a secreted fungal effector. Nature. 2011;478(7369):395–8.
CAS
PubMed
Google Scholar
Dou D, Kale SD, Wang X, Jiang RH, Bruce NA, Arredondo FD, Zhang X, Tyler BM. RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell. 2008;20(7):1930–47.
CAS
PubMed
PubMed Central
Google Scholar
Kemen E, Kemen AC, Rafiqi M, Hempel U, Mendgen K, Hahn M, Voegele RT. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant-Microbe Interact. 2005;18(11):1130–9.
CAS
PubMed
Google Scholar
Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park S-Y, Czymmek K, Kang S, Valent B. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell. 2010;22(4):1388–403.
CAS
PubMed
PubMed Central
Google Scholar
Kamoun S. A catalogue of the effector secretome of plant pathogenic oomycetes. Phytopathology. 2006;44(1):41.
CAS
Google Scholar
van der Does HC, Rep M. Virulence genes and the evolution of host specificity in plant-pathogenic fungi. Mol Plant-Microbe Interact. 2007;20(10):1175–82.
PubMed
Google Scholar
Vleeshouwers VG, Oliver RP. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant-Microbe Interact. 2014;27(3):196–206.
CAS
Google Scholar
Rep M, Van Der Does HC, Meijer M, Van Wijk R, Houterman PM, Dekker HL, De Koster CG, Cornelissen BJ. A small, cysteine‐rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I‐3‐mediated resistance in tomato. Mol Microbiol. 2004;53(5):1373–83.
CAS
PubMed
Google Scholar
Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell. 2009;21(4):1273–90.
CAS
PubMed
PubMed Central
Google Scholar
Jones JD, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–9.
CAS
Google Scholar
Schulze-Lefert P, Panstruga R. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 2011;16(3):117–25.
CAS
Google Scholar
Tosa Y. A model for the evolution of formae speciales and races. Phytopathology. 1992;82(7):728–30.
Google Scholar
Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog. 2011;7(7):e1002147.
CAS
PubMed
PubMed Central
Google Scholar
Murakami J, Tosa Y, Kataoka T, Tomita R, Kawasaki J, Chuma I, Sesumi Y, Kusaba M, Nakayashiki H, Mayama S. Analysis of host species specificity of Magnaporthe grisea toward wheat using a genetic cross between isolates from wheat and foxtail millet. Phytopathology. 2000;90(10):1060–7.
CAS
PubMed
Google Scholar
Scoles G, Nga N, Hau V, Tosa Y. Identification of genes for resistance to a Digitaria isolate of Magnaporthe grisea in common wheat cultivars. Genome. 2009;52(9):801–9.
Google Scholar
Takabayashi N, Tosa Y, Oh H, Mayama S. A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathology. 2002;92(11):1182–8.
CAS
PubMed
Google Scholar
Tosa Y, Tamba H, Tanaka K, Mayama S. Genetic analysis of host species specificity of Magnaporthe oryzae isolates from rice and wheat. Phytopathology. 2006;96(5):480–4.
CAS
PubMed
Google Scholar
Valent A, Bénard J, Clausse B, Barrois M, Valteau-Couanet D, Terrier-Lacombe M-J, Spengler B, Bernheim A. In vivo elimination of acentric double minutes containing amplified MYCN from neuroblastoma tumor cells through the formation of micronuclei. Am J Pathol. 2001;158(5):1579–84.
CAS
PubMed
PubMed Central
Google Scholar
Kang S, Sweigard JA, Valent B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microbe Interact. 1995;8(6):939–48.
CAS
PubMed
Google Scholar
Matsumura K, Tosa Y. The rye mildew fungus carries avirulence genes corresponding to wheat genes for resistance to races of the wheat mildew fungus. Phytopathology. 1995;85(7):753–6.
CAS
Google Scholar
de Wit PJ, Van Der Burgt A, Ökmen B, Stergiopoulos I, Abd-Elsalam KA, Aerts AL, Bahkali AH, Beenen HG, Chettri P, Cox MP. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. 2012;8(11):e1003088.
PubMed
PubMed Central
Google Scholar
Nemri A, Saunders DG, Anderson C, Upadhyaya NM, Win J, Lawrence GJ, Jones DA, Kamoun S, Ellis JG, Dodds PN. The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Front Plant Sci. 2014;5:98.
PubMed
PubMed Central
Google Scholar
Cantu D, Segovia V, MacLean D, Bayles R, Chen X, Kamoun S, Dubcovsky J, Saunders DG, Uauy C. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics. 2013;14(1):1.
Google Scholar
Brefort T, Tanaka S, Neidig N, Doehlemann G, Vincon V, Kahmann R. Characterization of the largest effector gene cluster of Ustilago maydis. PLoS Pathog. 2014;10(7):e1003866.
PubMed
PubMed Central
Google Scholar
Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, Doehlemann G, Di Stasio M, Rössel N, Mendoza-Mendoza A, Pester D. Pathogenicity determinants in smut fungi revealed by genome comparison. Science. 2010;330(6010):1546–8.
CAS
PubMed
Google Scholar
Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, Jiang RH, Zody MC, Kunjeti SG, Donofrio NM. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science. 2010;330(6010):1540–3.
CAS
PubMed
Google Scholar
Rafiqi M, Ellis JG, Ludowici VA, Hardham AR, Dodds PN. Challenges and progress towards understanding the role of effectors in plant–fungal interactions. Curr Opin Plant Biol. 2012;15(4):477–82.
CAS
PubMed
Google Scholar
Lee HA, Kim SY, Oh SK, Yeom SI, Kim SB, Kim MS, Kamoun S, Choi D. Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans. New Phytol. 2014;203(3):926–38.
CAS
PubMed
PubMed Central
Google Scholar
Win J, Morgan W, Bos J, Krasileva KV, Cano LM, Chaparro-Garcia A, Ammar R, Staskawicz BJ, Kamoun S. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell. 2007;19(8):2349–69.
CAS
PubMed
PubMed Central
Google Scholar
Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, van Themaat EVL, Brown JK, Butcher SA, Gurr SJ. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science. 2010;330(6010):1543–6.
CAS
PubMed
Google Scholar
Dong S, Stam R, Cano LM, Song J, Sklenar J, Yoshida K, Bozkurt TO, Oliva R, Liu Z, Tian M. Effector specialization in a lineage of the Irish potato famine pathogen. Science. 2014;343(6170):552–5.
CAS
PubMed
Google Scholar
Gan P, Narusaka M, Kumakura N, Tsushima A, Takano Y, Narusaka Y, Shirasu K. Genus-wide comparative genome analyses of Colletotrichum species reveal specific gene family losses and gains during adaptation to specific infection lifestyles. Genome Biol Evol. 2016;8(5):1467–81.
PubMed
PubMed Central
Google Scholar
Saunders DG, Win J, Cano LM, Szabo LJ, Kamoun S, Raffaele S. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi. PLoS One. 2012;7(1):e29847.
CAS
PubMed
PubMed Central
Google Scholar
Forgey W, Blanco M, Loegering W. Differences in pathological capabilities and host specificity of Colletotrichum graminicola on Zea mays [maize]. Plant Dis Rep. 1978;62(7-12):573.
Snyder BA, Nicholson RL. Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science. 1990;248(4963):1637–9.
CAS
PubMed
Google Scholar
Mims C, Vaillancourt L. Ultrastructural characterization of infection and colonization of maize leaves by Colletotrichum graminicola, and by a C. graminicola pathogenicity mutant. Phytopathology. 2002;92(7):803–12.
CAS
PubMed
Google Scholar
O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet. 2012;44(9)1060–65.
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23(9):1061–7.
CAS
PubMed
Google Scholar
Damm U, O’Connell R, Groenewald J, Crous P. The Colletotrichum destructivum species complex–hemibiotrophic pathogens of forage and field crops. Stud Mycol. 2014;79:49–84.
CAS
PubMed
PubMed Central
Google Scholar
Rollins JA. The characterization and inheritance of chromosomal variation in Glomerella graminicola. West Lafayette: Purdue University; 1996.
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J. Pfam: the protein families database. Nucleic Acids Res. 2013;42:gkt1223.
PubMed
PubMed Central
Google Scholar
Winnenburg R, Baldwin TK, Urban M, Rawlings C, Köhler J, Hammond-Kosack KE. PHI-base: a new database for pathogen host interactions. Nucleic Acids Res. 2006;34 suppl 1:D459–64.
CAS
PubMed
Google Scholar
Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack KE. The Pathogen-Host Interactions database (PHI-base): additions and future developments. Nucleic Acids Res. 2014;43:gku1165.
PubMed
PubMed Central
Google Scholar
Li LSCJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–89.
CAS
PubMed
PubMed Central
Google Scholar
Wall D, Fraser H, Hirsh A. Detecting putative orthologs. Bioinformatics. 2003;19(13):1710–1.
CAS
PubMed
Google Scholar
Torres MF, Ghaffari N, Buiate EA, Moore N, Schwartz S, Johnson CD, Vaillancourt LJ. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction. BMC Genomics. 2016;17(1):1.
Google Scholar
Vargas WA, Sanz-Martín JM, Rech GE, Armijos-Jaramillo VD, Rivera LP, Echeverria MM, Díaz-Mínguez JM, Thon MR, Sukno SA. A fungal effector with host nuclear localization and DNA-binding properties is required for maize anthracnose development. Mol Plant Microbe Interact. 2016;29:83–95.
CAS
PubMed
Google Scholar
Calvo SE, Mootha VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. 2010;11:25.
CAS
PubMed
PubMed Central
Google Scholar
Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–59.
CAS
PubMed
PubMed Central
Google Scholar
Jin K, Musso G, Vlasblom J, Jessulat M, Deineko V, Negroni J, Mosca R, Malty R, Nguyen-Tran D-H, Aoki H. Yeast mitochondrial protein–protein interactions reveal diverse complexes and disease-relevant functional relationships. J Proteome Res. 2015;14(2):1220–37.
CAS
PubMed
Google Scholar
Lee J, Sharma S, Kim J, Ferrante RJ, Ryu H. Mitochondrial nuclear receptors and transcription factors: who’s minding the cell? J Neurosci Res. 2008;86(5):961–71.
CAS
PubMed
PubMed Central
Google Scholar
de Jonge R, Thomma BP. Fungal LysM effectors: extinguishers of host immunity? Trends Microbiol. 2009;17(4):151–7.
PubMed
Google Scholar
Gijzen M, Nürnberger T. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry. 2006;67(16):1800–7.
CAS
PubMed
Google Scholar
Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y. Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryot Cell. 2013;12(1):2–11.
CAS
PubMed
PubMed Central
Google Scholar
Dong S, Wang Y. Nudix effectors: a common weapon in the arsenal of plant pathogens. PLoS Pathog. 2016;12(8):e1005704.
PubMed
PubMed Central
Google Scholar
Kulkarni RD, Kelkar HS, Dean RA. An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem Sci. 2003;28(3):118–21.
CAS
PubMed
Google Scholar
Pao SS, Paulsen IT, Saier MH. Major facilitator superfamily. Microbiol Mol Biol Rev. 1998;62(1):1–34.
CAS
PubMed
PubMed Central
Google Scholar
Saier Jr MH, Paulsen IT. Phylogeny of multidrug transporters. In: Seminars in cell & developmental biology. Academic Press. 2001;12(3):205–13.
Dean M. ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia. 2009;14(1):3–9.
PubMed
Google Scholar
Rao PV, Maddala R. Ankyrin-B in lens architecture and biomechanics: Just not tethering but more. BioArchitecture. 2016;6(2):39–45.
PubMed
PubMed Central
Google Scholar
Wight WD, Kim K-H, Lawrence CB, Walton JD. Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from Alternaria brassicicola. Mol Plant-Microbe Interact. 2009;22(10):1258–67.
CAS
PubMed
Google Scholar
Chen H, Lee MH, Daub ME, Chung KR. Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae. Mol Microbiol. 2007;64(3):755–70.
CAS
PubMed
Google Scholar
Carpita NC, McCann MC. Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci. 2008;13(8):415–20.
CAS
PubMed
Google Scholar
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551–6.
CAS
Google Scholar
Misas-Villamil JC, Van der Hoorn RA. Enzyme–inhibitor interactions at the plant–pathogen interface. Curr Opin Plant Biol. 2008;11(4):380–8.
CAS
PubMed
Google Scholar
Stachelhaus T, Mootz HD, Marahiel MA. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol. 1999;6(8):493–505.
CAS
Google Scholar
Brakhage AA, Schroeckh V. Fungal secondary metabolites–strategies to activate silent gene clusters. Fungal Genet Biol. 2011;48(1):15–22.
CAS
PubMed
Google Scholar
Khosla C, Gokhale RS, Jacobsen JR, Cane DE. Tolerance and specificity of polyketide synthases. Annu Rev Biochem. 1999;68(1):219–53.
CAS
PubMed
Google Scholar
Bowen JK, Mesarich CH, Rees-George J, Cui W, Fitzgerald A, Win J, Plummer KM, Templeton MD. Candidate effector gene identification in the ascomycete fungal phytopathogen Venturia inaequalis by expressed sequence tag analysis. Mol Plant Pathol. 2009;10(3):431–48.
CAS
PubMed
Google Scholar
Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, van Themaat EVL, van der Does HC, Hacquard S, Stüber K, Will I, Schmalenbach W. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog. 2012;8(4):e1002643.
CAS
PubMed
PubMed Central
Google Scholar
Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L, Singh KB, Manners JM, Taylor JM. EffectorP: predicting fungal effector proteins from secretomes using machine learning. New Phytol. 2015;210:743–61.
PubMed
Google Scholar
Crouch JA, Tomaso-Peterson M. Anthracnose disease of centipedegrass turf caused by Colletotrichum eremochloae, a new fungal species closely related to Colletotrichum sublineola. Mycologia. 2012;104(5):1085–96.
PubMed
Google Scholar
DeZwaan TM, Carroll AM, Valent B, Sweigard JA. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell. 1999;11(10):2013–30.
CAS
PubMed
PubMed Central
Google Scholar
Choi W, Dean RA. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell. 1997;9(11):1973–83.
CAS
PubMed
PubMed Central
Google Scholar
Raikhel N, Lee H, Broekaert W. Structure and function of chitin-binding proteins. Annu Rev Plant Biol. 1993;44(1):591–615.
CAS
Google Scholar
van Esse HP, Bolton MD, Stergiopoulos I, de Wit PJ, Thomma BP. The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Mol Plant-Microbe Interact. 2007;20(9):1092–101.
PubMed
Google Scholar
Kombrink A, Thomma BP. LysM effectors: secreted proteins supporting fungal life. PLoS Pathog. 2013;9(12):e1003769.
PubMed
PubMed Central
Google Scholar
de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MH, Thomma BP. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science. 2010;329(5994):953–5.
PubMed
Google Scholar
Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J, Hammond-Kosack KE, Thomma BP, Rudd JJ. Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol. 2011;156(2):756–69.
CAS
PubMed
PubMed Central
Google Scholar
Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BP. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell. 2012;24(1):322–35.
CAS
PubMed
PubMed Central
Google Scholar
Pain RH. In: PAIN RH, editor. Mechanisms of protein folding. 1994.
Google Scholar
Perfect SE, O’Connell RJ, Green EF, Doering‐Saad C, Green JR. Expression cloning of a fungal proline‐rich glycoprotein specific to the biotrophic interface formed in the Colletotrichum–bean interaction. Plant J. 1998;15(2):273–9.
CAS
PubMed
Google Scholar
Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nürnberger T. NPP1, a Phytophthora‐associated trigger of plant defense in parsley and Arabidopsis. Plant J. 2002;32(3):375–90.
CAS
PubMed
Google Scholar
Qutob D, Kamoun S, Gijzen M. Expression of a Phytophthora sojae necrosis‐inducing protein occurs during transition from biotrophy to necrotrophy. Plant J. 2002;32(3):361–73.
CAS
PubMed
Google Scholar
Qutob D, Kemmerling B, Brunner F, Küfner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T. Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell. 2006;18(12):3721–44.
CAS
PubMed
PubMed Central
Google Scholar
Bae H, Kim MS, Sicher RC, Bae H-J, Bailey BA. Necrosis-and ethylene-inducing peptide from Fusarium oxysporum induces a complex cascade of transcripts associated with signal transduction and cell death in Arabidopsis. Plant Physiol. 2006;141(3):1056–67.
CAS
PubMed
PubMed Central
Google Scholar
Vaillancourt LJ, Hanau RM. A method for genetic analysis of Glomerella graminicola (Colletotrichum graminicola) from maize. Phytopathology. 1991;81(5):530–4.
Google Scholar
Rech GE, Sanz-Martín JM, Anisimova M, Sukno SA, Thon MR. Natural selection on coding and noncoding DNA sequences is associated with virulence genes in a plant pathogenic fungus. Genome Biol Evol. 2014;6(9):2368–79.
CAS
PubMed
PubMed Central
Google Scholar
Xue M, Yang J, Li Z, Hu S, Yao N, Dean RA, Zhao W, Shen M, Zhang H, Li C. Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genet. 2012;8(8):e1002869.
PubMed
PubMed Central
Google Scholar
Yoshida K, Saunders DG, Mitsuoka C, Natsume S, Kosugi S, Saitoh H, Inoue Y, Chuma I, Tosa Y, Cano LM. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics. 2016;17(1):1.
Google Scholar
Boora KS, Frederiksen R, Magill C. DNA-based markers for a recessive gene conferring anthracnose resistance in sorghum. Crop Sci. 1998;38(6):1708–9.
CAS
Google Scholar
Rosewich U, Pettway R, McDonald B, Duncan R, Frederiksen R. Genetic structure and temporal dynamics of a Colletotrichum graminicola population in a sorghum disease nursery. Phytopathology. 1998;88(10):1087–93.
CAS
PubMed
Google Scholar
Valerio H, Resende M, Weikert-Oliveira R, Casela C. Virulence and molecular diversity in Colletotrichum graminicola from Brazil. Mycopathologia. 2005;159(3):449–59.
CAS
PubMed
Google Scholar
Chala A, Tronsmo A, Brurberg M. Genetic differentiation and gene flow in Colletotrichum sublineolum in Ethiopia, the centre of origin and diversity of sorghum, as revealed by AFLP analysis. Plant Pathol. 2011;60(3):474–82.
CAS
Google Scholar
Ali MEK, Warren HL. Physiological races of Colletotrichum graminicola on Sorghum. Plant Dis. 1987;71(5):402–4.
Google Scholar
da Costa R, Cota L, da Silva D, Parreira D, Casela C, Landau E, Figueiredo J. Races of Colletotrichum graminicola pathogenic to maize in Brazil. Crop Prot. 2014;56:44–9.
Google Scholar
Nicholson R, Warren H. The issue of races of Colletotrichum graminicola pathogenic to corn. Plant Dis. 1981;65:143–45.
Google Scholar
White D, Yanney J, Anderson B. Variation in pathogenicity, virulence, and aggressiveness of Colletotrichum graminicola on corn. Phytopathology. 1987;77(7):999–1001.
Google Scholar
Tuite J. Plant pathological methods. Fungi and bacteria. Minneapolis: Burgess Publishing Co.; 1969.
Google Scholar
Li W, Rehmeyer CJ, Staben C, Farman ML. TruMatch—a BLAST post-processor that identifies bona fide sequence matches to genome assemblies. Bioinformatics. 2005;21(9):2097–8.
CAS
PubMed
Google Scholar
Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6(1):31.
PubMed
PubMed Central
Google Scholar
Soderlund C, Nelson W, Shoemaker A, Paterson A. SyMAP: A system for discovering and viewing syntenic regions of FPC maps. Genome Res. 2006;16(9):1159–68.
CAS
PubMed
PubMed Central
Google Scholar
Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet. 2013;9(2):e1003323.
CAS
PubMed
PubMed Central
Google Scholar
Jothi R, Zotenko E, Tasneem A, Przytycka TM. COCO-CL: hierarchical clustering of homology relations based on evolutionary correlations. Bioinformatics. 2006;22(7):779–88.
CAS
PubMed
PubMed Central
Google Scholar
Moreno-Hagelsieb G, Latimer K. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics. 2008;24(3):319–24.
CAS
PubMed
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421.
PubMed
PubMed Central
Google Scholar
Punta M, Coggill P, Eberhardt R, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301. Atom-1 Force Constant Equilibrium Atom-2 Residue Atom (kcal · mol − 1 · Å − 2) Distance (Å) Residue Atom Y 2012, 397.
CAS
Google Scholar
Saier MH, Tran CV, Barabote RD. TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res. 2006;34 suppl 1:D181–6.
CAS
PubMed
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37 suppl 1:D233–8.
CAS
PubMed
Google Scholar
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40(W1):W445–51.
CAS
PubMed
PubMed Central
Google Scholar
Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35 suppl 2:W585–7.
PubMed
PubMed Central
Google Scholar
Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res. 2010;38 suppl 1:D227–33.
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
CAS
PubMed
PubMed Central
Google Scholar
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M. Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36 suppl 2:W465–9.
CAS
PubMed
PubMed Central
Google Scholar