Rose MR. Evolutionary biology of aging. New York: Oxford University Press; 1991.
Google Scholar
Charlesworth B. Evolution in age-structured populations. 2nd ed. Cambridge England; New York: Cambridge University Press; 1994.
Book
Google Scholar
Medawar PB. An unsolved problem of biology. London: Published for the college by H. K. Lewis; 1952.
Google Scholar
Hamilton WD. The moulding of senescence by natural selection. J Theor Biol. 1966;12(1):12–45.
Article
CAS
PubMed
Google Scholar
Williams GC. Pleiotropy, Natural-Selection, and the Evolution of Senescence. Evolution. 1957;11(4):398–411.
Article
Google Scholar
Rose MR. Life-History Evolution with Antagonistic Pleiotropy and Overlapping Generations. Theor Popul Biol. 1985;28(3):342–58.
Article
Google Scholar
Curtsinger JW, Service PM, Prout T. Antagonistic Pleiotropy, Reversal of Dominance, and Genetic Polymorphism. Am Nat. 1994;144(2):210–28.
Article
Google Scholar
Hedrick PW. Antagonistic pleiotropy and genetic polymorphism: a perspective. Heredity. 1999;82(2):126–33.
Article
Google Scholar
Connallon T, Clark AG. Antagonistic versus non-antagonistic models of balancing selection: Characterizing the relative timescales and hitchhiking effects of partial selective sweeps. Evolution. 2013;67(3):908–17.
Article
PubMed
Google Scholar
Kelly JK. An experimental method for evaluating the contribution of deleterious mutations to quantitative trait variation. Genet Res. 1999;73(03):263–73.
Article
CAS
PubMed
Google Scholar
Charlesworth B, Miyo T, Borthwick H. Selection responses of means and inbreeding depression for female fecundity in Drosophila melanogaster suggest contributions from intermediate-frequency alleles to quantitative trait variation. Genet Res. 2007;89(2):85–91.
Article
CAS
PubMed
Google Scholar
Kelly JK, Willis JH. Deleterious mutations and genetic variation for flower size in Mimulus guttatus. Evolution. 2001;55(5):937–42.
Article
CAS
PubMed
Google Scholar
Kelly JK. Deleterious mutations and the genetic variance of male fitness components in Mimulus guttatus. Genetics. 2003;164(3):1071–85.
PubMed
PubMed Central
Google Scholar
Kenyon A. Comparison of frequency distributions of viabilities of second with fourth chromosomes from caged Drosophila melanogaster. Genetics. 1967;55(1):123–30.
CAS
PubMed
PubMed Central
Google Scholar
Charlesworth B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc Natl Acad Sci U S A. 2015;112(6):1662–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergland AO, Behrman EL, O'Brien KR, Schmidt PS, Petrov DA. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 2014;10(11), e1004775.
Article
PubMed
PubMed Central
Google Scholar
Trotter MV, Spencer HG. Frequency-Dependent Selection and the Maintenance of Genetic Variation: Exploring the Parameter Space of the Multiallelic Pairwise Interaction Model. Genetics. 2007;176(3):1729–40.
Article
PubMed
PubMed Central
Google Scholar
Bersabe D, Caballero A, Perez-Figueroa A, Garcia-Dorado A. On the Consequences of Purging and Linkage on Fitness and Genetic Diversity. G3 (Bethesda). 2016;6(1):171–81.
Article
Google Scholar
Bubliy OA, Loeschcke V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J Evol Biol. 2005;18(4):789–803.
Article
CAS
PubMed
Google Scholar
Wit J, Sarup P, Lupsa N, Malte H, Frydenberg J, Loeschcke V. Longevity for free? Increased reproduction with limited trade-offs in Drosophila melanogaster selected for increased life span. Exp Gerontol. 2013;48(3):349–57.
Article
PubMed
Google Scholar
Wit J, Kristensen TN, Sarup P, Frydenberg J, Loeschcke V. Laboratory selection for increased longevity in Drosophila melanogaster reduces field performance. Exp Gerontol. 2013;48(11):1189–95.
Article
PubMed
Google Scholar
Rose MR. Genetics of Increased Lifespan in Drosophila. Bioessays. 1989;11(5):132–5.
Article
CAS
PubMed
Google Scholar
Paaby AB, Schmidt PS. Dissecting the genetics of longevity in Drosophila melanogaster. Fly. 2009;3(1):29–38.
Article
CAS
PubMed
Google Scholar
Kirkwood TB, Austad SN. Why do we age? Nature. 2000;408(6809):233–8.
Article
CAS
PubMed
Google Scholar
Partridge L, Gems D. Mechanisms of ageing: Public or private? Nat Rev Genet. 2002;3(3):165–75.
Article
CAS
PubMed
Google Scholar
Helfand SL, Rogina B. Genetics of aging in the fruit fly, Drosophila melanogaster. Annu Rev Genet. 2003;37:329–48.
Article
CAS
PubMed
Google Scholar
Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long AD. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature. 2010;467(7315):587–90.
Article
CAS
PubMed
Google Scholar
Schlotterer C, Kofler R, Versace E, Tobler R, Franssen SU. Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity (Edinb). 2015;114(5):431–40.
Article
CAS
Google Scholar
Turner TL, Stewart AD, Fields AT, Rice WR, Tarone AM. Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster. PLoS Genet. 2011;7(3), e1001336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Remolina SC, Chang PL, Leips J, Nuzhdin SV, Hughes KA. Genomic basis of aging and life-history evolution in Drosophila melanogaster. Evolution. 2012;66(11):3390–403.
Article
PubMed
PubMed Central
Google Scholar
Jha AR, Miles CM, Lippert NR, Brown CD, White KP, Kreitman M. Whole-Genome Resequencing of Experimental Populations Reveals Polygenic Basis of Egg-Size Variation in Drosophila melanogaster. Mol Biol Evol. 2015;32(10):2616–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carnes MU, Campbell T, Huang W, Butler DG, Carbone MA, Duncan LH, Harbajan SV, King EM, Peterson KR, Weitzel A, et al. The Genomic Basis of Postponed Senescence in Drosophila melanogaster. PLoS One. 2015;10(9), e0138569.
Article
PubMed
PubMed Central
Google Scholar
Harshman LG, Hoffmann AA. Laboratory selection experiments using Drosophila: what do they really tell us? Trends Ecol Evol. 2000;15(1):32–6.
Article
CAS
PubMed
Google Scholar
Houle D. Genetic Covariance of Fitness Correlates: What Genetic Correlations are Made of and Why it Matters. Evolution. 1991;45(3):630–48.
Article
Google Scholar
Findlay GD, Sitnik JL, Wang W, Aquadro CF, Clark NL, Wolfner MF. Evolutionary Rate Covariation Identifies New Members of a Protein Network Required for Drosophila melanogaster Female Post-Mating Responses. PLoS Genetics. 2014;10(1), e1004108.
Article
PubMed
PubMed Central
Google Scholar
Jeon M, Nguyen H, Bahri S, Zinn K. Redundancy and compensation in axon guidance: genetic analysis of the Drosophila Ptp10D/Ptp4E receptor tyrosine phosphatase subfamily. Neural Dev. 2008;3:3.
Article
PubMed
PubMed Central
Google Scholar
Lee HK, Cording A, Vielmetter J, Zinn K. Interactions between a Receptor Tyrosine Phosphatase and a Cell Surface Ligand Regulate Axon Guidance and Glial-Neuronal Communication. Neuron. 2013;78(5):813–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian M, Pan G, Sun L, Feng C, Xie Z, Tully T, Zhong Y. Receptor-like tyrosine phosphatase PTP10D is required for long-term memory in Drosophila. J Neurosci. 2007;27(16):4396–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto M, Ueda R, Takahashi K, Saigo K, Uemura T. Control of axonal sprouting and dendrite branching by the Nrg-Ank complex at the neuron-glia interface. Curr Biol. 2006;16(16):1678–83.
Article
CAS
PubMed
Google Scholar
Neely GG, Hess A, Costigan M, Keene AC, Goulas S, Langeslag M, Griffin RS, Belfer I, Dai F, Smith SB, et al. A Genome-wide Drosophila Screen for Heat Nociception Identifies ?2?3 as an Evolutionarily Conserved Pain Gene. Cell. 2010;143(4):628–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iqbal Z, Vandeweyer G, van der Voet M, Waryah AM, Zahoor MY, Besseling JA, Roca LT, Vulto-van Silfhout AT, Nijhof B, Kramer JM, et al. Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders. Hum Mol Genet. 2013;22(10):1960–70.
Article
CAS
PubMed
Google Scholar
Kang L, Aggarwal DD, Rashkovetsky E, Korol AB, Michalak P. Rapid genomic changes in Drosophila melanogaster adapting to desiccation stress in an experimental evolution system. BMC Genomics. 2016;17(1):233.
Article
PubMed
PubMed Central
Google Scholar
Asthana S, Schmidt S, Sunyaev S. A limited role for balancing selection. Trends Genet. 2005;21(1):30–2.
Article
CAS
PubMed
Google Scholar
Andres AM, Hubisz MJ, Indap A, Torgerson DG, Degenhardt JD, Boyko AR, Gutenkunst RN, White TJ, Green ED, Bustamante CD, et al. Targets of balancing selection in the human genome. Mol Biol Evol. 2009;26(12):2755–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roux C, Pauwels M, Ruggiero MV, Charlesworth D, Castric V, Vekemans X. Recent and ancient signature of balancing selection around the S-locus in Arabidopsis halleri and A. lyrata. Mol Biol Evol. 2013;30(2):435–47.
Article
CAS
PubMed
Google Scholar
Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 2002;12(12):1805–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paaby AB, Schmidt PS. Dissecting the genetics of longevity in Drosophila melanogaster. Fly (Austin). 2009;3(1):29–38.
Article
CAS
Google Scholar
Roff DA. The evolution of life histories: theory and analysis. New York: Chapman & Hall; 1992.
Google Scholar
Stearns SC. The evolution of life histories. Oxford: Oxford University Press; 1992.
Google Scholar
Reznick D. Costs of Reproduction - an Evaluation of the Empirical-Evidence. Oikos. 1985;44(2):257–67.
Article
Google Scholar
Loeschcke V. Genetic constraints on adaptive evolution. Berlin: Springer; 1987.
Book
Google Scholar
Stearns SC. Trade-Offs in Life-History Evolution. Funct Ecol. 1989;3(3):259–68.
Article
Google Scholar
Vermeulen CJ, Loeschcke V. Longevity and the stress response in Drosophila. Exp Gerontol. 2007;42(3):153–9.
Article
CAS
PubMed
Google Scholar
Tobler R, Franssen SU, Kofler R, Orozco-Terwengel P, Nolte V, Hermisson J, Schlotterer C. Massive habitat-specific genomic response in D. melanogaster populations during experimental evolution in hot and cold environments. Mol Biol Evol. 2014;31(2):364–75.
Article
CAS
PubMed
Google Scholar
Harman D. The aging process. Proc Natl Acad Sci U S A. 1981;78(11):7124–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orr WC, Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994;263(5150):1128–30.
Article
CAS
PubMed
Google Scholar
Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet. 1998;19(2):171–4.
Article
CAS
PubMed
Google Scholar
>Ruan H, Tang XD, Chen ML, Joiner ML, Sun G, Brot N, Weissbach H, Heinemann SH, Iverson L, Wu CF, et al. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci U S A. 2002;99(5):2748–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Legan SK, Rebrin I, Mockett RJ, Radyuk SN, Klichko VI, Sohal RS, Orr WC. Overexpression of glucose-6-phosphate dehydrogenase extends the life span of Drosophila melanogaster. J Biol Chem. 2008;283(47):32492–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY). 2014;6(12):992–1009.
Article
Google Scholar
Hao Z, Fan C, Cheng T, Su Y, Wei Q, Li G. Genome-wide identification, characterization and evolutionary analysis of long intergenic noncoding RNAs in cucumber. PLoS One. 2015;10(3), e0121800.
Article
PubMed
PubMed Central
Google Scholar
Crnokrak P, Barrett SC. Perspective: purging the genetic load: a review of the experimental evidence. Evolution. 2002;56(12):2347–58.
Article
PubMed
Google Scholar
Macpherson JN, Weir BS, Leigh Brown AJ. Extensive linkage disequilibrium in the achaete-scute complex of Drosophila melanogaster. Genetics. 1990;126(1):121–9.
CAS
PubMed
PubMed Central
Google Scholar
Berry AJ, Ajioka JW, Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics. 1991;129(4):1111–7.
CAS
PubMed
PubMed Central
Google Scholar
Jensen MA, Charlesworth B, Kreitman M. Patterns of genetic variation at a chromosome 4 locus of Drosophila melanogaster and D. simulans. Genetics. 2002;160(2):493–507.
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Thornton K, Berry A, Long M. Nucleotide Variation Along the Drosophila melanogaster Fourth Chromosome. Science. 2002;295(5552):134–7.
Article
CAS
PubMed
Google Scholar
Haddrill PR, Halligan DL, Tomaras D, Charlesworth B. Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over. Genome Biol. 2007;8(2):R18.
Article
PubMed
PubMed Central
Google Scholar
Arguello JR, Zhang Y, Kado T, Fan C, Zhao R, Innan H, Wang W, Long M. Recombination yet inefficient selection along the Drosophila melanogaster subgroup's fourth chromosome. Mol Biol Evol. 2010;27(4):848–61.
Article
CAS
PubMed
Google Scholar
Norry FM, Dahlgaard J, Loeschcke V. Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster. Mol Ecol. 2004;13(11):3585–94.
Article
CAS
PubMed
Google Scholar
Sarup P, Loeschcke V. Life extension and the position of the hormetic zone depends on sex and genetic background in Drosophila melanogaster. Biogerontology. 2011;12(2):109–17.
Article
PubMed
Google Scholar
Sarup P, Sorensen P, Loeschcke V. Flies selected for longevity retain a young gene expression profile. Age (Dordr). 2011;33(1):69–80.
Article
CAS
Google Scholar
Aronesty E. Comparison of Sequencing Utility Programs. Open Bioinforma J. 2013;7:1–8.
Article
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
Google Scholar
Kofler R, Pandey RV, Schlotterer C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics. 2011;27(24):3435–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kofler R, Orozco-terWengel P, De Maio N, Pandey RV, Nolte V, Futschik A, Kosiol C, Schlotterer C. PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One. 2011;6(1), e15925.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boitard S, Kofler R, Francoise P, Robelin D, Schlotterer C, Futschik A. Pool-hmm: a Python program for estimating the allele frequency spectrum and detecting selective sweeps from next generation sequencing of pooled samples. Mol Ecol Resour. 2013;13(2):337–40.
Article
PubMed
PubMed Central
Google Scholar
Kessner D, Novembre J. forqs: forward-in-time simulation of recombination, quantitative traits and selection. Bioinformatics. 2014;30(4):576–7.
Article
CAS
PubMed
Google Scholar