Jones JDG, Vance RE, Dangl JL. Intracellular innate immune surveillance devices in plants and animals. Sci. 2016;354(6316):1117.
Shao ZQ, Xue JY, Wu P, Zhang YM, Wu Y, Hang YY, Wang B, Chen JQ. Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol. 2016;170(4):2095–109.
Article
CAS
PubMed
Google Scholar
Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics. 2004;271(4):402–15.
Article
CAS
PubMed
Google Scholar
Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009;41:1275–81.
Article
CAS
PubMed
Google Scholar
Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, Hénaff E, Câmara F, Cozzuto L, Lowy E, Alioto T, Capella-Guitérrez S, Blanca J, Cañizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodríguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdós B, Melé M, et al. The genome of melon (Cucumis melo L.). PNAS. 2012;109(29):11872–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013;45:51–8.
Article
CAS
PubMed
Google Scholar
Jia X, Yuan Y, Zhang Y, Yang S, Zhang X. Extreme expansion of NBS-encoding genes in Rosaceae. BMC Genet. 2015;16:48.
Article
PubMed
PubMed Central
Google Scholar
González VM, Müller S, Baulcombe D, Puigdomenech P. Evolution of NBS-LRR gene copies among Dicot plants and its regulation by members of the miR482/2119 superfamily of miRNAs. Mol Plant. 2015;8:329–31.
Article
PubMed
Google Scholar
González VM, Aventín N, Centeno E, Puigdomènech P. High presence/absence gene variability in defense-related gene clusters of Cucumis melo. BMC Genomics. 2013;14:782–95.
Article
PubMed
PubMed Central
Google Scholar
González VM, Aventín N, Centeno E, Puigdomènech P. Interspecific and intraspecific gene variability in a 1-Mb region containing the highest density of NBS-LRR genes found in the melon genome. BMC Genomics. 2014;15:1131.
Article
PubMed
PubMed Central
Google Scholar
Brotman Y, Normantovich M, Goldenberg Z, Zvirin Z, Kovalski I, Stovbun N, Doniger T, Bolger AM, Troadec C, Bendahmane A, Cohen R, Katzir N, Pitrat M, Dogimont C, Perl-Treves R. Dual resistance of melon to Fusarium oxysporum races 0 and 2 and to Papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture. Mol Plant. 2013;6(1):235–8.
Article
CAS
PubMed
Google Scholar
Guo YL, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D. Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol. 2011;157(2):757–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jupe F, Pritchard L, Etherington GJ, Mackenzie K, Cock PJ, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JD, Hein I. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics. 2012;13:75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christopoulou M, Wo SR, Kozik A, McHale LK, Truco MJ, Wroblewski T, Michelmore RW. Genome-wide architecture of disease resistance genes in lettuce. G3 (Bethesda). 2015;5(12):2655–69.
Article
Google Scholar
Dogimont C, Chovelon V, Pauquet J, Boualem A, Bendahmane A. The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance. Plant J. 2014;80(6):993–1004.
Article
CAS
PubMed
Google Scholar
van Leeuwen H, Garcia-Mas J, Coca M, Puigdoménech P, Monfort A. Analysis of the melon genome in regions encompassing TIR-NBS-LRR resistance genes. Mol Genet Genomics. 2005;273(3):240–51.
Article
CAS
PubMed
Google Scholar
Huerta-Cepas J, Capella-Gutiérrez S, Pryszcz LP, Marcet-Houben M, Gabaldón T. PhylomeDB v4: zooming into the plurality of evolutionary histories of a genome. Nucleic Acids Res. 2014;42:D897–902.
Article
CAS
PubMed
Google Scholar
Proost S, Van Bel M, Vaneecchoutte D, Van de Peer Y, Inze D, Mueller-Roeber B, Vandepoele K. PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Res. 2015;43:D974–81.
Article
PubMed
Google Scholar
van Leeuwen H, Monfort A, Puigdomenech P. Mutator-like elements identified in melon, Arabidopsis and rice contain ULP1 protease domains. Mol Genet Genomics. 2007;277(4):357–64.
Article
CAS
PubMed
Google Scholar
Flutre T, Duprat E, Feuillet C, Quesneville H. Considering transposable element diversification in de novo annotation approaches. PLoS One. 2011;6(1):e16526.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin X, Zhang Y, Kuang H, Chen J. Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae. BMC Genomics. 2013;14:335.
Article
CAS
PubMed
PubMed Central
Google Scholar
European Nucleotide Archive. http://www.ebi.ac.uk/ena/.
Sanseverino W, Hénaff E, Vives C, Pinosio S, Burgos-Paz W, Morgante M, Ramos-Onsins SE, Garcia-Mas J, Casacuberta JM. Transposon insertions, structural variations, and SNPs contribute to the evolution of the melon genome. Mol Biol Evol. 2015;32(10):2760–74.
Article
CAS
PubMed
Google Scholar
He X, Li X, Pandey S, Yandell BS, Pathak M, Weng Y. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet. 2013;126:2149–61.
Article
CAS
PubMed
Google Scholar
Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucl Acid Res. 2005;33:W465–7.
Article
CAS
Google Scholar
Solovyev V, Kosarev P, Seledsov I, Vorobyev D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 2006;7(1):10. 1–12.
Article
Google Scholar
Sanseverino W, Roma G, De Simone M, Faino L, Melito S, Stupka E, Frusciante L, Ercolano MR. PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucleic Acids Res. 2010;38:D814–21.
Article
CAS
PubMed
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucl Acid Res. 2011;39:W29–37.
Article
CAS
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M. The Pfam protein families database. Nucleic Acids Res. 2014;42:D222–30.
Article
CAS
PubMed
Google Scholar
Cucurbit Genomes Database. http://icugi.org. Accessed 15 Jan 2015.
Phytozome 11, The Plant Genomics Resource. http://phytozome.jgi.doe.gov. Accessed 15 Jan 2015.
Luming Y, Dawei L, Yuhong L, Xingfang G, Sanwen H, Jordi G-M, Yiqun W. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol. 2013;13:53.
Article
Google Scholar
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucl Acid Res. 2008;36:W465–9.
Article
CAS
Google Scholar
Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucl Acid Res. 2012;40(7):e49.
Article
CAS
Google Scholar
O’Brien KP, Remm M, Sonnhammer EL. InParanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res. 2005;33:D476–80.
Article
PubMed
Google Scholar
Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Städler T, Renner SS, Kamoun S, Lucas WJ, Zhang Z, Huang S. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 2013;45(12):1510–5. Accessed 4 Nov 2016.
Article
CAS
PubMed
Google Scholar
Jiang H, Lei R, Ding SW, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014;15:182.
Article
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rausch T, Zichner T, Schlattl A, Stuetz AM, Benes V, Korbel JO. Delly: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:i333–9.
Article
CAS
PubMed
PubMed Central
Google Scholar