Wang J, Guo J, Hao X, Hu H, Lin H, Zhang Y, et al. Phylogenetic Relationships of Pig Breeds from Shandong Province of China and Their Influence by Modern Commercial Breeds by Analysis of Mitochondrial DNA Sequences. Ital J Anim Sci. 2010;9:e48.
Article
Google Scholar
Tachie-Menson CKB. Basic Principles in rearing pigs. Accra: Asempa Publishers, Christian Council of Ghana; 1990.
Google Scholar
Ahunu BK, Boa-Amponsem K, Okantah SA, Aboagye GS, Buadu MK. National Animal Breeding Plan for Ghana. A Draft Report on National Livestock Genetic Improvement. 1995.
Google Scholar
Darko K, Buadu MK. The performance of a herd of Ashanti Dwarf pigs in the Forest zone of Ghana. In: Proc. of 24th Ghana Animal Science Assoc. Kumasi: University of Science and Technology; 1998. p. 8.
Google Scholar
Adjei OD, Osei-Amponsah R, Ahunu BK. Morphological characterisation of local pigs in Ghana. Bull Anim Health Prod Afr AnGR Spec Ed. 2015;68:295–300.
Barnes A, Fleischer J. Growth rate and carcass characteristics of indigenous (Ashanti Dwarf) pig. Ghana J Agric Sci. 1998;31:217–21.
Google Scholar
Sarpong PK. Post-weaning growth performance of the Ashanti Black Pig under intensive management system. MSc. Cape Coast: University of Cape Coast; 2009.
Madzimure J. Climate change adaptation and economic valuation of local pig genetic resources in communal production systems of South Africa. Ph.D. Alice: University of Fort Hare; 2011.
Ndindana W, Dzama K, Ndiweni PNB, Maswaure SM, Chimonyo M. Digestibility of high fibre diets and performance of growing Zimbabwean indigenous Mukota pigs and exotic Large White pigs fed maize based diets with graded levels of maize cobs. Anim Feed Sci Technol. 2002;97:199–208.
Article
Google Scholar
Kanengoni AT, Dzama K, Chimonyo M, Kusina J, Maswaure SM. Influence of level of maize cob meal on nutrient digestibility and nitrogen balance in Large White, Mukota and LW × M F 1 crossbred pigs. ResearchGate. 2002;74:127–34.
CAS
Google Scholar
Mushandu J, Chimonyo M, Dzama K, Makuza SM, Mhlanga FN. Influence of sorghum inclusion level on performance of growing local Mukota, Large White and their F1 crossbred pigs in Zimbabwe. Anim Feed Sci Technol. 2005;122:321–9.
Article
Google Scholar
Devendra C, Fuller MF. Pig Production in the Tropics. Oxford; New York: Oxford University Press; 1979.
Google Scholar
Holness DH. The tropical agriculturist. Pigs. London: Macmillan Education Ltd; 1991.
Google Scholar
Tweneboah CK. Modern agriculture in the tropics. A textbook on Animal production. Accra: Co-wood Publishers; 2000.
Google Scholar
APD (Animal Production Directorate). Ghana’s country report on animal genetic resources. 2003.
Google Scholar
Amills M. Biodiversity and Origin of Pig Breeds. Bull Univ Agric Sci Vet Med Cluj-Napoca Anim Sci Biotechnol. 2011;68:1-5.
Eggen A. The development and application of genomic selection as a new breeding paradigm. Anim Front. 2012;2:10–5.
Article
Google Scholar
Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, et al. Worldwide Phylogeography of Wild Boar Reveals Multiple Centers of Pig Domestication. Science. 2005;307:1618–21.
Article
CAS
PubMed
Google Scholar
Haile J, Larson G, Owens K, Dobney K, Shapiro B. Ancient DNA typing of archaeological pig remains corroborates historical records. J Archaeol Sci. 2010;37:174–7.
Article
Google Scholar
Avise JC. Phylogeography: the history and formation of species. Cambridge: Harvard University Press; 2000.
Kim K-I, Lee J-H, Li K, Zhang Y-P, Lee S-S, Gongora J, et al. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim Genet. 2002;33:19–25.
Article
CAS
PubMed
Google Scholar
Fang M, Berg F, Ducos A, Andersson L. Mitochondrial haplotypes of European wild boars with 2n = 36 are closely related to those of European domestic pigs with 2n = 38. Anim Genet. 2006;37:459–64.
Article
CAS
PubMed
Google Scholar
Ramos AM, Crooijmans RPMA, Affara NA, Amaral AJ, Archibald AL, Beever JE, et al. Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology. PLoS One. 2009;4. doi:10.1371/journal.pone.0006524.
Cliffe KM, Day AE, Bagga M, Siggens K, Quilter CR, Lowden S, et al. Analysis of the non-recombining Y chromosome defines polymorphisms in domestic pig breeds: ancestral bases identified by comparative sequencing. Anim Genet. 2010;41:619–29.
Article
CAS
PubMed
Google Scholar
Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990;346:245–50.
Article
CAS
PubMed
Google Scholar
Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346:240–4.
Article
CAS
PubMed
Google Scholar
Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature. 1991;351:117–21.
Article
CAS
PubMed
Google Scholar
Switonski M, Mankowska M, Salamon S. Family of melanocortin receptor (MCR) genes in mammals—mutations, polymorphisms and phenotypic effects. J Appl Genet. 2013;54:461–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Margeta P, Margeta V, BudIMIR K. How black is really Black slavonian pig? Acta Agric Slov. 2013;4:25–8.
Google Scholar
Robbins LS, Nadeau JH, Johnson KR, Kelly MA, Roselli-Rehfuss L, Baack E, et al. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell. 1993;72:827–34.
Article
CAS
PubMed
Google Scholar
Kijas JM, Wales R, Törnsten A, Chardon P, Moller M, Andersson L. Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics. 1998;150:1177–85.
CAS
PubMed
PubMed Central
Google Scholar
Kijas JM, Moller M, Plastow G, Andersson L. A frameshift mutation in MC1R and a high frequency of somatic reversions cause black spotting in pigs. Genetics. 2001;158:779–85.
CAS
PubMed
PubMed Central
Google Scholar
Fang M, Larson G, Ribeiro HS, Li N, Andersson L. Contrasting Mode of Evolution at a Coat Color Locus in Wild and Domestic Pigs. PLoS Genet. 2009;5. doi:10.1371/journal.pgen.1000341.
Innan H, Kim Y. Pattern of polymorphism after strong artificial selection in a domestication event. Proc Natl Acad Sci U S A. 2004;101:10667–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dun G, Li X, Cao H, Zhou R, Li L. Variations of Melanocortin Receptor 1 (MC1R) Gene in Three Pig Breeds. J Genet Genomics. 2007;34:777–82.
Article
CAS
PubMed
Google Scholar
Reissmann M, Ludwig A. Pleiotropic effects of coat colour-associated mutations in humans, mice and other mammals. Semin Cell Dev Biol. 2013;24:576–86.
Article
CAS
PubMed
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.
Article
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44–57.
Article
Google Scholar
Blench RM. A history of pigs in Africa. In: Blench RM, MacDonald K, editors. Origins and development of African livestock: archaeology, genetics, linguistics and ethnography. Florence: Routledge Books; 1999. p. 355–67.
Google Scholar
Ramírez O, Ojeda A, Tomàs A, Gallardo D, Huang LS, Folch JM, et al. Integrating Y-Chromosome, Mitochondrial, and Autosomal Data to Analyze the Origin of Pig Breeds. Mol Biol Evol. 2009;26:2061–72.
Article
PubMed
Google Scholar
Porter V. Pigs: A Handbooks to the Breeds of the World. Ithaca: Cornell University Press; 1993.
Google Scholar
Ursing BM, Arnason U. The complete mitochondrial DNA sequence of the pig (Sus scrofa). J Mol Evol. 1998;47:302–6.
Article
CAS
PubMed
Google Scholar
Bruford MW, Bradley DG, Luikart G. DNA markers reveal the complexity of livestock domestication. Nat Rev Genet. 2003;4:900–10.
Article
CAS
PubMed
Google Scholar
McCann BE, Malek MJ, Newman RA, Schmit BS, Swafford SR, Sweitzer RA, et al. Mitochondrial diversity supports multiple origins for invasive pigs. J Wildl Manag. 2014;78:202–13.
Article
Google Scholar
Giuffra E, Kijas JM, Amarger V, Carlborg O, Jeon JT, Andersson L. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics. 2000;154:1785–91.
CAS
PubMed
PubMed Central
Google Scholar
Okumura N, Kurosawa Y, Kobayashi E, Watanobe T, Ishiguro N, Yasue H, et al. Genetic relationship amongst the major non-coding regions of mitochondrial DNAs in wild boars and several breeds of domesticated pigs. Anim Genet. 2001;32:139–47.
Article
CAS
PubMed
Google Scholar
Watanobe T, Ishiguro N, Okumura N, Nakano M, Matsui A, Hongo H, et al. Ancient mitochondrial DNA reveals the origin of Sus scrofa from Rebun Island, Japan. J Mol Evol. 2001;52:281–9.
Article
CAS
PubMed
Google Scholar
Li J, Yang H, Li J, Li H, Ning T, Pan X-R, et al. Artificial selection of the melanocortin receptor 1 gene in Chinese domestic pigs during domestication. Heredity. 2010;105:274–81.
Article
CAS
PubMed
Google Scholar
Uimari P, Sironen A, Sevón-Aimonen M-L. Whole-genome SNP association analysis of reproduction traits in the Finnish Landrace pig breed. Genet Sel Evol GSE. 2011;43:42.
Article
CAS
PubMed
Google Scholar
Burgos-Paz W, Souza CA, Megens HJ, Ramayo-Caldas Y, Melo M, Lemús-Flores C, et al. Porcine colonization of the Americas: a 60k SNP story. Heredity. 2013;110:321–30.
Article
CAS
PubMed
Google Scholar
Ai H, Huang L, Ren J. Genetic Diversity, Linkage Disequilibrium and Selection Signatures in Chinese and Western Pigs Revealed by Genome-Wide SNP Markers. PLoS One. 2013;8: doi:10.1371/journal.pone.0056001.
Rubin C-J, Megens H-J, Barrio AM, Maqbool K, Sayyab S, Schwochow D, et al. Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci U S A. 2012;109:19529–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takasuga A. PLAG1 and NCAPG-LCORL in livestock. Anim Sci J. 2016;87:159–67.
Article
CAS
PubMed
Google Scholar
Soranzo N, Rivadeneira F, Chinappen-Horsley U, Malkina I, Richards JB, Hammond N, et al. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size. PLoS Genet. 2009;5:e1000445.
Article
PubMed
PubMed Central
Google Scholar
G T Pereira A, Utsunomiya YT, Milanesi M, Torrecilha RBP, Carmo AS, Neves HHR, et al. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth. PLoS One. 2016;11:e0158165.
Article
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–26.
CAS
PubMed
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–70.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am J Hum Genet. 2007;81:559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar