Benavides JA, Cross PC, Luikart G, Creel S. Limitations to estimating bacterial cross-species transmission using genetic and genomic markers: Inferences from simulation modeling. Evol Appl . 2014;7:774–87. Available from: http://doi.wiley.com/10.1111/eva.12173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haydon DT, Cleaveland S, Taylor LH, Laurenson MK. Identifying reservoirs of infection: A conceptual and practical challenge. Emerg Infect Dis. 2002;8:1468–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12498665.
Article
PubMed
Google Scholar
Michel AL, Müller B, van Helden PD. Mycobacterium bovis at the animal-human interface: A problem, or not? Vet Microbiol . 2010;140:371–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19773134.
Article
PubMed
Google Scholar
Cousins DV, Roberts JL. Australia’s campaign to eradicate bovine tuberculosis: The battle for freedom and beyond. Tuberculosis . 2001;81:5–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11463220.
Article
CAS
PubMed
Google Scholar
Reviriego Gordejo FJ, Vermeersch JP. Towards eradication of bovine tuberculosis in the European Union. Vet Microbiol. 2006;112:101–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16388921.
Article
CAS
PubMed
Google Scholar
Hall S. Official bovine tuberculosis-free status in Scotland. Vet Rec. 2010;166:245–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20173112.
Article
PubMed
Google Scholar
Corner LAL. The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: How to assess the risk. Vet Microbiol. 2006;112:303–12. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378113505004050.
Article
CAS
PubMed
Google Scholar
Gortazar C, Cowan P. Dealing with TB in wildlife. Epidemiol Infect. 2013;141:1339–41. Available from: http://www.journals.cambridge.org/abstract_S0950268813000599.
Article
CAS
PubMed
Google Scholar
Morris RS, Pfeiffer DU. Directions and issues in bovine tuberculosis epidemiology and control in New Zealand. N Z Vet J. 1995;43:256–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16031864.
Article
CAS
PubMed
Google Scholar
Nugent G, Gortazar C, Knowles G. The epidemiology of Mycobacterium bovis in wild deer and feral pigs and their roles in the establishment and spread of bovine tuberculosis in New Zealand wildlife. N Z Vet J. 2015;63 Suppl 1:54–67. Available from: http://www.tandfonline.com/doi/full/10.1080/00480169.2014.963792.
Article
PubMed
PubMed Central
Google Scholar
OSPRI. Annual Report 2014–2015. 2015.
Google Scholar
Livingstone PG, Hancox N, Nugent G, de Lisle GW. Toward eradication: The effect of Mycobacterium bovis infection in wildlife on the evolution and future direction of bovine tuberculosis management in New Zealand. N Z Vet J. 2014;63 Suppl 1:4–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25273888.
Google Scholar
Livingstone PG, Hancox N, Nugent G, Mackereth G, Hutchings SA. Development of the New Zealand strategy for local eradication of tuberculosis from wildlife and livestock. N Z Vet J. 2015;2015:98–107. Available from: http://dx.doi.org/10.1080/00480169.2015.1013581.
Article
Google Scholar
Skuce RA, McDowell SW, Mallon TR, Luke B, Breadon EL, Lagan PL, et al. Discrimination of isolates of Mycobacterium bovis in Northern Ireland on the basis of variable numbers of tandem repeats (VNTRs). Vet Rec . 2005;157:501–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16244231%5Cn. http://veterinaryrecord.bmj.com/content/157/17/501.abstract.
Article
CAS
PubMed
Google Scholar
Price-Carter M, Rooker S, Collins DM. Comparison of 45 variable number tandem repeat (VNTR) and two direct repeat (DR) assays to restriction endonuclease analysis for typing isolates of Mycobacterium bovis. Vet Microbiol Elsevier BV. 2011;150:107–14. Available from: http://dx.doi.org/10.1016/j.vetmic.2011.01.012.
Article
CAS
Google Scholar
Collins DM. DNA typing of Mycobacterium bovis strains from the Castlepoint area of the Wairarapa. N Z Vet J. 1999;47:207–9. Available from: http://www.tandfonline.com/doi/abs/10.1080/00480169.1999.36145.
Article
CAS
PubMed
Google Scholar
Smith NH, Gordon SV, de la Rua-Domenech R, Clifton-Hadley RS, Hewinson RG. Bottlenecks and broomsticks: The molecular evolution of Mycobacterium bovis. Nat. Rev. Microbiol. 2006;4:670–81.
CAS
Google Scholar
Navarro Y, Romero B, Copano MF, Bouza E, Domínguez L, de Juan L, et al. Multiple sampling and discriminatory fingerprinting reveals clonally complex and compartmentalized infections by M. bovis in cattle. Vet Microbiol. 2015;175:99–104. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378113514005161.
Article
PubMed
Google Scholar
de Lisle GW, Yates GF, Collins DM, MacKenzie RW, Crews KB, Walker R. A study of bovine tuberculosis in domestic animals and wildlife in the MacKenzie Basin and surrounding areas using DNA fingerprinting. N Z Vet J. 1995;43:266–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16031865.
Article
PubMed
Google Scholar
Buddle B, de Lisle G, Griffin J, Hutchings S. Epidemiology, diagnostics, and management of tuberculosis in domestic cattle and deer in New Zealand in the face of a wildlife reservoir. N Z Vet J. 2015;63:19–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24992203.
Article
PubMed
PubMed Central
Google Scholar
Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U, Blom J, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: A longitudinal molecular epidemiological study. PLoS Med. 2013;10:1–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23424287.
Article
Google Scholar
Biek R, O’Hare A, Wright D, Mallon T, McCormick C, Orton RJ, et al. Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog. 2012;8:e1003008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glaser L, Carstensen M, Shaw S, Robbe-Austerman S, Wunschmann A, Grear D, et al. Descriptive epidemiology and whole genome sequencing analysis for an outbreak of bovine tuberculosis in beef cattle and white-tailed deer in northwestern Minnesota. PLoS One. 2016;11:1–21. Available from: http://dx.doi.org/10.1371/journal.pone.0145735.
Google Scholar
de Lisle GW, Pamela Kawakami R, Yates GF, Collins DM. Isolation of Mycobacterium bovis and other mycobacterial species from ferrets and stoats. Vet Microbiol . 2008;132:402–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S037811350800206X.
Article
PubMed
Google Scholar
Collins DM, De Lisle GW, Gabric DM. Geographic distribution of restriction types of Mycobacterium bovis isolates from brush-tailed possums (Trichosurus vulpecula) in New Zealand. J Hyg (Lond). 1986;96:431–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3016075.
Article
CAS
Google Scholar
Vestal, AL. Procedures for the isolation and identification of Mycobacteria. Dept. of Health, Education, and Welfare, Public Health Service, Center for Disease Control, Bureau of Laboratories, Training and Consultation Division. 1975.
Andrews S. FastQC: A quality control tool for high throughput sequence data. 2010.
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21278185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krueger F. Trim Galore. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. 2015.
Google Scholar
Garnier T, Eiglmeier K, Camus J-C, Medina N, Mansoor H, Pryor M, et al. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A. 2003;100:7877–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12788972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19451168.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19505943.
Article
PubMed
PubMed Central
Google Scholar
Sampson SL. Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin. Dev. Immunol. 2011; Available from: http://www.ncbi.nlm.nih.gov/pubmed/21318182.
Felsenstein J. PHYLIP - Phylogeny inference package - v3.2. Cladistics. 1989. p. 164–6. Available from: http://doi.wiley.com/10.1111/j.1096-0031.1989.tb00562.x
Rambaut A. Path-O-Gen: Temporal signal investigation tool v1.4. 2009.
Google Scholar
Drummond AJ, Rambaut A. BEAST: Bayesian Evolutionary Analysis by Sampling Trees. BMC Evol Biol. 2007;7:214. Available from: http://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-7-214.
Article
PubMed
PubMed Central
Google Scholar
Firth C, Kitchen A, Shapiro B, Suchard MA, Holmes EC, Rambaut A. Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol. 2010;27:2038–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its roots. PLoS Comput Biol. 2009;5:1–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19779555.
Article
Google Scholar
Ho SYW, Shapiro B. Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol Ecol Resour. 2011;11:423–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21481200.
Article
PubMed
Google Scholar
Rambaut A, Drummond AJ. Tracer v1. 4. 2007.
Google Scholar
Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:160–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3934395.
Article
CAS
PubMed
Google Scholar
Gill MS, Lemey P, Faria NR, Rambaut A, Shapiro B, Suchard MA. Improving Bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol Biol Evol. 2013;30:713–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23180580.
Article
CAS
PubMed
Google Scholar
Pagel M, Meade A, Barker D. Bayesian estimation of ancestral character states on phylogenies. Syst Biol. 2004;53:673–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15545248.
Article
PubMed
Google Scholar
Binney B, Biggs P, Carter P, Holland B, French N. Quantification of historical livestock importation into New Zealand 1860–1979. N Z Vet J. 2014;62:309–14. Available from: http://www.tandfonline.com/doi/abs/10.1080/00480169.2014.914861.
Article
CAS
PubMed
Google Scholar
Trewby H, Wright D, Breadon EL, Lycett SJ, Mallon TR, McCormick C, et al. Use of bacterial whole-genome sequencing to investigate local persistence and spread in bovine tuberculosis. Epidemics Elsevier BV. 2016;14:26–35. Available from: http://dx.doi.org/10.1016/j.epidem.2015.08.003.
Article
Google Scholar
Biek R, Pybus OG, Lloyd-Smith JO, Didelot X. Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. [Internet]. Elsevier Ltd. 2015;30:306–13. Available from: http://dx.doi.org/10.1016/j.tree.2015.03.009.
Google Scholar
Cooke MM, Buddle BM, Aldwell FE, McMurray DN, Alley MR. The pathogenesis of experimental endo-bronchial Mycobacterium bovis infection in brushtail possums (Trichosurus vulpecula). N Z Vet J. 1999;47:187–92. Available from: http://www.tandfonline.com/doi/abs/10.1080/00480169.1999.36141.
Article
CAS
PubMed
Google Scholar
Nugent G, Buddle B, Knowles G. Epidemiology and control of Mycobacterium bovis infection in brushtail possums (Trichosurus vulpecula), the primary wildlife host of bovine tuberculosis in New Zealand. N Z Vet J. 2015;63:28–41. Available from: http://www.tandfonline.com/doi/full/10.1080/00480169.2014.963791.
Article
PubMed
PubMed Central
Google Scholar
Flynn JL, Chan J. Tuberculosis: Latency and reactivation. Infect Immun. 2001;69:4195–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cassidy JP. The pathogenesis and pathology of bovine tuberculosis with insights from studies of tuberculosis in humans and laboratory animal models. Vet Microbiol [Internet]. 2006;112:151–61. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378113505003895.
Article
CAS
Google Scholar
Roper T. Badger. HarperCollins UK. 2010.
Google Scholar
Colangeli R, Arcus VL, Cursons RT, Ruthe A, Karalus N, Coley K, et al. Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans. Kaushal D, editor. PLoS One. 2014;9:1–9. Available from: http://dx.plos.org/10.1371/journal.pone.0091024.
Article
Google Scholar
Walker TM, Ip CLC, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: A retrospective observational study. Lancet Infect Dis. 2012;13(2):137–46.
Article
PubMed
Google Scholar
Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberclosis during latent infection. Nat Genet [Internet]. 2011;43:482–6. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3101871&tool=pmcentrez&rendertype=abstract.
Article
CAS
PubMed Central
Google Scholar
Mestre O, Luo T, Dos Vultos T, Kremer K, Murray A, Namouchi A, et al. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair. PLoS One. 2011;6:e16020. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21283803ok.
O’Neill MB, Mortimer TD, O’Neill MB, Mortimer TD, Pepperell CS. Diversity of Mycobacterium tuberculosis across evolutionary scales. PLoS Pathog. 2015;11:1–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26562841.
Google Scholar
Croucher NJ, Didelot X. The application of genomics to tracing bacterial pathogen transmission. Curr Opin Microbiol Elsevier Ltd. 2015;23:62–7. Available from: http://dx.doi.org/10.1016/j.mib.2014.11.004.
Article
Google Scholar
Kao RR, Haydon DT, Lycett SJ, Murcia PR. Supersize me: How whole-genome sequencing and big data are transforming epidemiology. Trends Microbiol Elsevier Ltd. 2014;22:282–91. Available from: http://dx.doi.org/10.1016/j.tim.2014.02.011.
Article
CAS
Google Scholar
New Zealand Government. Code of Welfare Commercial Slaughter. 2016. Available from: https://www.mpi.govt.nz/mpisearch/?site-search=Code+of+Welfare+Commercial+Slaughter&action_doPageSearch=.
Google Scholar
National Animal Ethics Advisory Committee. Research on vertebrate pesticides and traps: Do wild animals benefit? 2012. Available from: https://www.mpi.govt.nz/protection-and-response/animal-welfare/overview/national-animal-ethics-advisory-committee/naeac-publications/.
Google Scholar
Felsenstein J. PHYLIP-Phylogeny inference package (Version 3.2). Cladistics. 1989;5:163–6.
Article
Google Scholar
Google. Google Maps. 2016.
Google Scholar
Bryant JM, Schürch AC, van Deutekom H, Harris SR, de Beer JL, de Jager V, et al. Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data. BMC Infect Dis [Internet]. 2013;13:1–12. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-13-110.