Bardhan P, Faruque AS, Naheed A, Sack DA. Decrease in shigellosis-related deaths without Shigella spp.-specific interventions, Asia. Emerg Infect Dis. 2010;16(11):1718–23.
Article
PubMed
PubMed Central
Google Scholar
Gu B, Cao Y, Pan S, Zhuang L, Yu R, Peng Z, Qian H, Wei Y, Zhao L, Liu G, et al. Comparison of the prevalence and changing resistance to nalidixic acid and ciprofloxacin of Shigella between Europe-America and Asia-Africa from 1998 to 2009. Int J Antimicrob Agents. 2012;40(1):9–17.
Article
CAS
PubMed
Google Scholar
Sun Q, Lan R, Wang J, Xia S, Wang Y, Wang Y, Jin D, Yu B, Knirel YA, Xu J. Identification and characterization of a novel Shigella flexneri serotype Yv in China. PLoS One. 2013;8(7):e70238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allison GE, Verma NK. Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol. 2000;8(1):17–23.
Article
CAS
PubMed
Google Scholar
West NP, Sansonetti P, Mounier J, Exley RM, Parsot C, Guadagnini S, Prevost MC, Prochnicka-Chalufour A, Delepierre M, Tanguy M, et al. Optimization of virulence functions through glucosylation of Shigella LPS. Science. 2005;307(5713):1313–7.
Article
CAS
PubMed
Google Scholar
The HC, Thanh DP, Holt KE, Thomson NR, Baker S. The genomic signatures of Shigella evolution, adaptation and geographical spread. Nat Rev Microbiol. 2016;14(4):235–50.
Article
PubMed
Google Scholar
Walker RI. An assessment of enterotoxigenic Escherichia Coli and Shigella vaccine candidates for infants and children. Vaccine. 2015;33(8):954–65.
Article
CAS
PubMed
Google Scholar
Noriega FR, Liao FM, Maneval DR, Ren S, Formal SB, Levine MM. Strategy for cross-protection among Shigella flexneri serotypes. Infect Immun. 1999;67(2):782–8.
CAS
PubMed
PubMed Central
Google Scholar
Wehler T, Carlin NI. Structural and immunochemical studies of the lipopolysaccharide from a new provisional serotype of Shigella flexneri. Eur J Biochem. 1988;176(2):471–6.
Article
CAS
PubMed
Google Scholar
Stagg RM, Cam PD, Verma NK. Identification of newly recognized serotype 1c as the most prevalent Shigella flexneri serotype in northern rural Vietnam. Epidemiol Infect. 2008;136(8):1134–40.
Article
CAS
PubMed
Google Scholar
Ahmed SF, Klena J, Husain T, Monestersky J, Naguib A, Wasfy MO. Genetic characterization of antimicrobial resistance of Shigella flexneri 1c isolates from patients in Egypt and Pakistan. Ann Clin Microbiol Antimicrob. 2013;12:9.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Gendy A, El-Ghorab N, Lane EM, Elyazeed RA, Carlin NI, Mitry MM, Kay BA, Savarino SJ, Peruski LF Jr. Identification of Shigella flexneri subserotype 1c in rural Egypt. J Clin Microbiol. 1999;37(3):873–4.
CAS
PubMed
PubMed Central
Google Scholar
Qiu S, Xu X, Wang Y, Yang G, Wang Z, Wang H, Zhang L, Liu N, Chen C, Liu W, et al. Emergence of resistance to fluoroquinolones and third-generation cephalosporins in Shigella flexneri subserotype 1c isolates from China. Clin Microbiol Infect. 2012;18(4):E95–8.
Article
CAS
PubMed
Google Scholar
Mavris M, Manning PA, Morona R. Mechanism of bacteriophage SfII-mediated serotype conversion in Shigella flexneri. Mol Microbiol. 1997;26(5):939–50.
Article
CAS
PubMed
Google Scholar
Guan S, Bastin DA, Verma NK. Functional analysis of the O antigen glucosylation gene cluster of Shigella flexneri bacteriophage SfX. Microbiology. 1999;145(Pt 5):1263–73.
Article
CAS
PubMed
Google Scholar
Stagg RM, Tang SS, Carlin NI, Talukder KA, Cam PD, Verma NK. A novel glucosyltransferase involved in O-antigen modification of Shigella flexneri serotype 1c. J Bacteriol. 2009;191(21):6612–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheibye-Alsing K, Hoffmann S, Frankel A, Jensen P, Stadler PF, Mang Y, Tommerup N, Gilchrist MJ, Nygard AB, Cirera S, et al. Sequence assembly. Comput Biol Chem. 2009;33(2):121–36.
Article
CAS
PubMed
Google Scholar
Jin Q, Yuan Z, Xu J, Wang Y, Shen Y, Lu W, Wang J, Liu H, Yang J, Yang F, et al. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia Coli K12 and O157. Nucleic Acids Res. 2002;30(20):4432–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y. A tale of three next generation sequencing platforms: comparison of ion torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012;13:341.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker KS, Mather AE, McGregor H, Coupland P, Langridge GC, Day M, Deheer-Graham A, Parkhill J, Russell JE, Thomson NR. The extant world war 1 dysentery bacillus NCTC1: a genomic analysis. Lancet. 2014;384(9955):1691–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 2012;30(7):693–700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawrence JG, Ochman H. Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol. 1997;44(4):383–97.
Article
CAS
PubMed
Google Scholar
Freter R. Agglutinating efficiency and combining capacity of Shigella and vibrio antisera from rabbits at different stages of immunization. J Exp Med. 1957;105(6):623–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Knirel YA, Lan R, Senchenkova SN, Luo X, Perepelov AV, Wang Y, Shashkov AS, Xu J, Sun Q. Identification of an O-acyltransferase gene (oacB) that mediates 3- and 4-O-acetylation of rhamnose III in Shigella flexneri O antigens. J Bacteriol. 2014;196(8):1525–31.
Article
PubMed
PubMed Central
Google Scholar
Jakhetia R, Marri A, Stahle J, Widmalm G, Verma NK. Serotype-conversion in Shigella flexneri: identification of a novel bacteriophage, Sf101, from a serotype 7a strain. BMC Genomics. 2014;15:742.
Article
PubMed
PubMed Central
Google Scholar
Sun Q, Lan R, Wang J, Wang Y, Li P, Du P, Xu J. Isolation and genomic characterization of SfI, a serotype-converting bacteriophage of Shigella flexneri. BMC Microbiol. 2013;13:39.
Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol. 1997;23(6):1089–97.
Article
CAS
PubMed
Google Scholar
Walker JC, Verma NK. Identification of a putative pathogenicity island in Shigella flexneri using subtractive hybridisation of the S. Flexneri and Escherichia Coli genomes. FEMS Microbiol Lett. 2002;213(2):257–64.
Article
CAS
PubMed
Google Scholar
Rajakumar K, Sasakawa C, Adler B. Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin a protease-like family of proteins. Infect Immun. 1997;65(11):4606–14.
CAS
PubMed
PubMed Central
Google Scholar
Fasano A, Noriega FR, Liao FM, Wang W, Levine MM. Effect of shigella enterotoxin 1 (ShET1) on rabbit intestine in vitro and in vivo. Gut. 1997;40(4):505–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henderson IR, Czeczulin J, Eslava C, Noriega F, Nataro JP. Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia Coli. Infect Immun. 1999;67(11):5587–96.
CAS
PubMed
PubMed Central
Google Scholar
Al-Hasani K, Adler B, Rajakumar K, Sakellaris H. Distribution and structural variation of the she pathogenicity island in enteric bacterial pathogens. J Med Microbiol. 2001;50(9):780–6.
Article
CAS
PubMed
Google Scholar
Nie H, Yang F, Zhang X, Yang J, Chen L, Wang J, Xiong Z, Peng J, Sun L, Dong J, et al. Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a. BMC Genomics. 2006;7:173.
Article
PubMed
PubMed Central
Google Scholar
Vokes SA, Reeves SA, Torres AG, Payne SM. The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol Microbiol. 1999;33(1):63–73.
Article
CAS
PubMed
Google Scholar
Moss JE, Cardozo TJ, Zychlinsky A, Groisman EA. The selC-associated SHI-2 pathogenicity island of Shigella flexneri. Mol Microbiol. 1999;33(1):74–83.
Article
CAS
PubMed
Google Scholar
Ashida H, Toyotome T, Nagai T, Sasakawa C. Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Mol Microbiol. 2007;63(3):680–93.
Article
CAS
PubMed
Google Scholar
Daury L, Orange F, Taveau JC, Verchere A, Monlezun L, Gounou C, Marreddy RK, Picard M, Broutin I, Pos KM, et al. Tripartite assembly of RND multidrug efflux pumps. Nat Commun. 2016;7:10731.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE. Genes acrA and acrB encode a stress-induced efflux system of Escherichia Coli. Mol Microbiol. 1995;16(1):45–55.
Article
CAS
PubMed
Google Scholar
Iqbal MS, Rahman M, Islam R, Banik A, Amin MB, Akter F, Talukder KA. Plasmid-mediated sulfamethoxazole resistance encoded by the sul2 gene in the multidrug-resistant Shigella flexneri 2a isolated from patients with acute diarrhea in Dhaka, Bangladesh. PLoS One. 2014;9(1):e85338.
Article
PubMed
PubMed Central
Google Scholar
Toro CS, Farfan M, Contreras I, Flores O, Navarro N, Mora GC, Prado V. Genetic analysis of antibiotic-resistance determinants in multidrug-resistant Shigella strains isolated from Chilean children. Epidemiol Infect. 2005;133(1):81–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brussow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68(3):560–602. table of contents
Article
PubMed
PubMed Central
Google Scholar
Boyd EF. Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res. 2012;82:91–118.
Article
CAS
PubMed
Google Scholar
Ingersoll M, Groisman EA, Zychlinsky A. Pathogenicity islands of Shigella. Curr Top Microbiol Immunol. 2002;264(1):49–65.
CAS
PubMed
Google Scholar
Schmidt H, Hensel M. Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev. 2004;17(1):14–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakellaris H, Luck SN, Al-Hasani K, Rajakumar K, Turner SA, Adler B. Regulated site-specific recombination of the she pathogenicity island of Shigella flexneri. Mol Microbiol. 2004;52(5):1329–36.
Article
CAS
PubMed
Google Scholar
Ghosh S, Pazhani GP, Chowdhury G, Guin S, Dutta S, Rajendran K, Bhattacharya MK, Takeda Y, Niyogi SK, Nair GB, et al. Genetic characteristics and changing antimicrobial resistance among Shigella spp. isolated from hospitalized diarrhoeal patients in Kolkata, India. J Med Microbiol. 2011;60(Pt 10):1460–6.
Article
PubMed
Google Scholar
Connor TR, Barker CR, Baker KS, Weill FX, Talukder KA, Smith AM, Baker S, Gouali M, Pham Thanh D, Jahan Azmi I, et al. Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. elife. 2015;4:e07335.
Article
PubMed
PubMed Central
Google Scholar
Barondess JJ, Beckwith J. A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature. 1990;346(6287):871–4.
Article
CAS
PubMed
Google Scholar
Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996;272(5270):1910–4.
Article
CAS
PubMed
Google Scholar
Cavalieri SJ, Harbeck RJ, YS MC, Ortez JH, Rankin ID, Sautter RL, Sharp SE, Spiegel CA. Manual of Antimicrobial Susceptibility Testing. Seattle, Washington 98195. American Society for Microbiology. 2005.
Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10(6):563–9.
Article
CAS
PubMed
Google Scholar
FastQC High Throughput Sequence QC Report. [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/].
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics. 2010; Chapter 11:Unit 11 15
Li H: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. In., vol. 0: The Oxford University Press; 2013: 1–3.
Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics. 2010;26(5):589–95.
Article
PubMed
PubMed Central
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963.
Article
PubMed
PubMed Central
Google Scholar
PacBio reads: Assembly with command line tools. [https://sepsis-omics.github.io/tutorials/modules/cmdline_assembly/].
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.
Article
CAS
PubMed
Google Scholar
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14(7):1394–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008;36(Web Server issue):W181–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol. 2011;12(3):R30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu B, Pop M. ARDB--antibiotic resistance genes database. Nucleic Acids Res. 2009;37(Database issue):D443–7.
Article
CAS
PubMed
Google Scholar
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, Harris SR. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microbial Genomics. 2016;2(4):e000056.
Article
PubMed
PubMed Central
Google Scholar
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.
Article
CAS
PubMed
Google Scholar
FigTree [http://tree.bio.ed.ac.uk/software/figtree/].