Werkman CH, Gillen GF. Bacteria producing trimethylene glycol. J Bacteriol. 1932;23:167–82.
CAS
PubMed
PubMed Central
Google Scholar
Lipsky BA, Hook EW, Smith AA, Plorde JJ. Citrobacter infections in humans: experience at the Seattle veterans administration medical center and a review of the literature. Rev Infect Dis. 1980;2:746–60.
Article
CAS
PubMed
Google Scholar
Hodges G, Degener C, Barnes W. Clinical significance of Citrobacter isolates. Am J Clin Pathol. 1978;70:37–40.
Article
CAS
PubMed
Google Scholar
Arens S, Verhaegen J, Verbist L. Differentiation and susceptibility of Citrobacter isolates from patients in a university hospital. Clin Microbiol Infect. 1997;3:53–7.
Article
PubMed
Google Scholar
Katzenellenbogen E, Kocharova NA, Korzeniowska-Kowal A, Bogulska M, Rybka J, Gamian A, Kachala VV, Shashkov AS, Knirel YA. Structure of the glycerol phosphate-containing O-specific polysaccharide and serological studies on the lipopolysaccharides of Citrobacter werkmanii PCM 1548 and PCM 1549 (serogroup O14). FEMS Immunol Med Microbiol. 2008;54:255–62.
Article
CAS
PubMed
Google Scholar
Doran TI. The role of Citrobacter in clinical disease of children: review. Clin Infect Dis. 1999;28:384–94.
Article
CAS
PubMed
Google Scholar
Badger JL, Stins MF, Kim KS. Citrobacter freundii invades and replicates in human brain microvascular endothelial cells. Infect Immun. 1999;67:4208–15.
CAS
PubMed
PubMed Central
Google Scholar
Macaskie LE, Empson RM, Lin F, Tolley MR. Enzymatically-mediated uranium accumulation and uranium recovery using a Citrobacter sp. immobilised as a biofilm within a plug-flow reactor. J Chem Technol Biotechnol. 1995;63:1–16.
Article
CAS
Google Scholar
Jeong BC, Hawes C, Bonthrone KM, Macaskie LE. Localization of enzymically enhanced heavy metal accumulation by Citrobacter sp. and metal accumulation in vitro by liposomes containing entrapped enzyme. Microbiology. 1997;143:2497–507.
Article
CAS
PubMed
Google Scholar
Finlay JA, Allan VJM, Conner A, Callow ME, Basnakova G, Macaskie LE. Phosphate release and heavy metal accumulation by biofilm-immobilized and chemically-coupled cells of a citrobacter sp. pre-grown in continuous culture. Biotechnol Bioeng. 1999;63:87–97.
Article
CAS
PubMed
Google Scholar
Maervoet VE, Beauprez J, De Maeseneire SL, Soetaert WK, De Mey M. Citrobacter werkmanii, a new candidate for the production of 1, 3-propanediol: strain selection and carbon source optimization. Green Chem. 2012;14:2168–78.
Article
CAS
Google Scholar
Maervoet VE, De Maeseneire SL, Soetaert WK, De Mey M. Unraveling the dha cluster in Citrobacter werkmanii: comparative genomic analysis of bacterial 1,3-propanediol biosynthesis clusters. Bioprocess Biosyst Eng. 2014;37:711–8.
Article
CAS
PubMed
Google Scholar
Maervoet VE, De Maeseneire SL, Avci FG, Beauprez J, Soetaert WK, De Mey M. High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii. Microb Cell Factories. 2016;15:23.
Article
Google Scholar
Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45.
Article
CAS
PubMed
Google Scholar
Kikuchi T, Mizunoe Y, Takade A, Naito S, Yoshida S. Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol. 2005;49:875–84.
Article
CAS
PubMed
Google Scholar
Dueholm MS, Albertsen M, Otzen D, Nielsen PH. Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS One. 2012;7:e51274.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SM, Lee HW, Choi YW, Kim SH, Lee JC, Lee YC, Seol SY, Cho DT, Kim J. Involvement of curli fimbriae in the biofilm formation of Enterobacter cloacae. J Microbiol. 2012;50:175–8.
Article
CAS
PubMed
Google Scholar
Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol. 2006;157:867–75.
Article
CAS
PubMed
Google Scholar
Speranza B, Corbo MR, Sinigaglia M. Effects of nutritional and environmental conditions on Salmonella sp. biofilm formation. J Food Sci. 2011;76:M12–6.
Article
CAS
PubMed
Google Scholar
Li LJ, Zhou G, Shi QS, Chen YC, Chen YB, Ouyang YS, Hu WF. Identification and biofilm formation characterization of Citrobacter werkmanii isolated from industrial spoilage. Microbiology China. 2014;41:2–7.
CAS
Google Scholar
Zhou G, Li L, Shi Q, Ouyang Y, Chen Y, Hu W. Effects Of nutritional and environmental conditions on planktonic growth and biofilm formation for Citrobacter werkmanii BF-6. J Microbiol Biotechnol. 2013;23:1673–82.
Article
CAS
PubMed
Google Scholar
Zhou G, Shi QS, Huang XM, Xie XB. Proteome responses of Citrobacter werkmanii BF-6 planktonic cells and biofilms to calcium chloride. J Proteome. 2016;133:134–43.
Article
CAS
Google Scholar
De Gregorio E, Del Franco M, Martinucci M, Roscetto E, Zarrilli R, Di Nocera PP. Biofilm-associated proteins: news from Acinetobacter. BMC Genomics. 2015;16:933.
Article
PubMed
PubMed Central
Google Scholar
Hermans K, Roberfroid S, Thijs IM, Kint G, De Coster D, Marchal K, Vanderleyden J, De Keersmaecker SCJ, Steenackers HP. FabR regulates Salmonella biofilm formation via its direct target FabB. BMC Genomics. 2016;17:253.
Article
PubMed
PubMed Central
Google Scholar
Brenner D, Grimont P, Steigerwalt A, Fanning G, Ageron E, Riddle C. Classification of Citrobacter farmeri sp. nov., Citrobacter youngae sp. nov., Citrobacter sedlakii sp. nov., and three unnamed Citrobacter genospecies. Int J Syst Bacteriol. 1993;43:645–58.
Article
CAS
PubMed
Google Scholar
Brenner DJ, O'Hara CM, Grimont PA, Janda JM, Falsen E, Aldova E, Ageron E, Schindler J, Abbott SL, Steigerwalt AG. Biochemical identification of Citrobacter species defined by DNA hybridization and description of Citrobacter gillenii sp. nov. (formerly Citrobacter genomospecies 10) and Citrobacter murliniae sp. nov. (formerly Citrobacter genomospecies 11). J Clin Microbiol. 1999;37:2619–24.
CAS
PubMed
PubMed Central
Google Scholar
Schauer DB, Zabel BA, Pedraza IF, O'Hara CM, Steigerwalt AG, Brenner DJ. Genetic and biochemical characterization of Citrobacter rodentium sp. nov. J Clin Microbiol. 1995;33:2064–8.
CAS
PubMed
PubMed Central
Google Scholar
Jackson DW, Simecka JW, Romeo T. Catabolite repression of Escherichia coli biofilm formation. J Bacteriol. 2002;184:3406–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6:613–24.
Article
PubMed
Google Scholar
Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002;56:187–209.
Article
CAS
PubMed
Google Scholar
Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg E. Gene expression in Pseudomonas aeruginosa biofilms. Nature. 2001;413:860–4.
Article
CAS
PubMed
Google Scholar
Schembri MA, Kjærgaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Mol Microbiol. 2003;48:253–67.
Article
CAS
PubMed
Google Scholar
Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol. 2004;186:692–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber MM, French CL, Barnes MB, Siegele DA, McLean RJA. Previously uncharacterized gene, yjfO (bsmA), influences Escherichia coli biofilm formation and stress response. Microbiology. 2010;156:139–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Domka J, Lee J, Wood TK. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol. 2006;72:2449–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waters CM, Lu W, Rabinowitz JD, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol. 2008;190:2527–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srivastava D, Waters CM. A tangled web: regulatory connections between quorum sensing and cyclic di-GMP. J Bacteriol. 2012;194:4485–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bobrov AG, Kirillina O, Perry RD. The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett. 2005;247:123–30.
Article
CAS
PubMed
Google Scholar
Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol. 2004;54:75–88.
Article
CAS
PubMed
Google Scholar
Kim Y, Wang X, Ma Q, Zhang XS, Wood TK. Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J Bacteriol. 2009;191:1258–67.
Article
CAS
PubMed
Google Scholar
Barnhart MM, Chapman MR. Curli biogenesis and function. Annu Rev Microbiol. 2006;60:131–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood TK. Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol. 2009;11:1–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Labrie J, Pelletier-Jacques G, Deslandes V, Ramjeet M, Auger E, Nash JH, Jacques M. Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae. Vet Res. 2010;41:3.
Article
PubMed
Google Scholar
Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10:563–9.
Article
CAS
PubMed
Google Scholar
Li R, Li Y, Kristiansen K, Wang JSOAP. Short oligonucleotide alignment program. Bioinformatics. 2008;24:713–4.
Article
CAS
PubMed
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1:18.
Article
PubMed
PubMed Central
Google Scholar
Krumsiek J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics. 2007;23:1026–8.
Article
CAS
PubMed
Google Scholar
Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics. 2007;23:673–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lukashin AV, Borodovsky M. GeneMark.Hmm: new solutions for gene finding. Nucleic Acids Res. 1998;26:1107–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zdobnov EM, Apweiler R. InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17:847–8.
Article
CAS
PubMed
Google Scholar
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada TA. Human gut microbial gene catalog established by metagenomic sequencing. Nature. 2010;464:59–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao B, Sun YF, Lian B, Chen TM. Complete genome sequence and comparative genome analysis of the Paenibacillus mucilaginosus K02. Microb Pathog. 2016;93:194–203.
Article
CAS
PubMed
Google Scholar
Shukla SK, Rao TS. Effect of calcium on Staphylococcus aureus biofilm architecture: a confocal laser scanning microscopic study. Colloid Surf B-Biointerfaces. 2013;103:448–54.
Article
CAS
Google Scholar
Heydorn A, Ersbøll BK, Hentzer M, Parsek MR, Givskov M, Molin S. Experimental reproducibility in flow-chamber biofilms. Microbiology. 2000;146:2409–15.
Article
CAS
PubMed
Google Scholar
Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 2000;146:2395–407.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Chan GF, Gan HM, Rashid NAA. Genome sequence of Citrobacter sp. strain A1, a dye-degrading bacterium. J Bacteriol. 2012;194:5485–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Kaur C, Kimura K, Takeo M, Raghava GPS, Mayilraj S. Draft genome sequence of the type species of the genus Citrobacter, Citrobacter freundii MTCC 1658. Genome Announc. 2013;1:e00120–12.
PubMed
PubMed Central
Google Scholar
Lenz A, Tomkins J, Fabich AJ. Draft genome sequence of Citrobacter rodentium DBS100 (ATCC 51459), a primary model of Enterohemorrhagic Escherichia coli virulence. Genome Announc. 2015;3:e00415–5.
Basra P, Koziol A, Wong A, Carrillo CD. Complete genome sequences of Citrobacter braakii strains GTA-CB01 and GTA-CB04, isolated from ground beef. Genome Announc. 2015;3:e01307–14.
Article
PubMed
PubMed Central
Google Scholar