Mitter C, Farrell B, Wiegmann B. The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am Nat. 1988;132:107–28.
Article
Google Scholar
Mopper S. Adaptive genetic structure in phytophagous insect populations. Trends Ecol Evol. 1996;11:235–8.
Article
CAS
PubMed
Google Scholar
Schoonhoven LM, van Loon JJA, Dicke M. Insect-plant biology. New York: Oxford University Press; 2008.
Google Scholar
Machado V, Wunder M, Baldissera VD, Oliveira JV, Fiuza LM, Nagoshi RN. Molecular characterization of host strains of Spodoptera frugiperda (Lepidoptera: Noctuidae) in southern Brazil. Ann Entomol Soc Am. 2008;101:619–26.
Article
CAS
Google Scholar
Dres M, Mallet J. Host races in plant-feeding insects and their importance in sympatric speciation. P Roy Soc B-Biol Sci. 2002;357:471–92.
Google Scholar
Via S. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol. 2001;16:381–90.
Article
CAS
PubMed
Google Scholar
Rundle HD, Nosil P. Ecological speciation. Ecol Lett. 2005;8:336–52.
Article
Google Scholar
Matsubayashi KW, Ohshima I, Nosil P. Ecological speciation in phytophagous insects. Entomol Exp Appl. 2010;134:1–27.
Article
Google Scholar
Funk DJ, Nosil P. Comparative analyses of ecological speciation. In: Tilmon KJ, editor. Specialization, speciation, and radiation. Berkeley and Los Angeles: University of California Press; 2008. p. 117–35.
Google Scholar
Nosil P, Harmon LJ, Seehausen O. Ecological explanations for (incomplete) speciation. Trends Ecol Evol. 2009;24:145–56.
Article
PubMed
Google Scholar
Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP. Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol Evol. 2010;25:459–67.
Article
PubMed
Google Scholar
West-Eberhard MJ. Developmental plasticity and evolution. New York: Oxford University Press; 2003.
Google Scholar
Whitman DW, Agrawal AA. What is phenotypic plasticity and why is it important? In: Phenotypic Plasticity of Insects: Mechanisms and Consequences. Edited by Whitman DW, Ananthakrishnan TN: CRC press; 2009. p. 1–63.
Chapter
Google Scholar
Moczek AP, Sultan S, Foster S, Ledon-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW. The role of developmental plasticity in evolutionary innovation. P Roy Soc B-Biol Sci. 2011;278:2705–13.
Article
Google Scholar
Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R, Bennison C, Ball AD, Beckerman AP, Slate J. Adaptation genomics: the next generation. Trends Ecol Evol. 2010;25:705–12.
Article
PubMed
Google Scholar
Beaumont MA, Balding DJ. Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol. 2004;13:969–80.
Article
CAS
PubMed
Google Scholar
Orr HA. The genetic theory of adaptation: a brief history. Nat Rev Genet. 2005;6:119–27.
Article
CAS
PubMed
Google Scholar
Pashley DP. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex? Ann Entomol Soc Am. 1986;79:898–904.
Article
Google Scholar
Groot AT, Marr M, Heckel DG, Schofl G. The roles and interactions of reproductive isolation mechanisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Ecol Entomol. 2010;35:105–18.
Article
Google Scholar
Busato GR, Grutzmacher AD, de Oliveira AC, Vieira EA, Zimmer PD, Kopp MM, Bandeira JD, Magalhães TR. Analysis of the molecular structure and diversity of Spodoptera frugiperda (JE smith) (Lepidoptera: Noctuidae) populations associated to the corn and rice crops in Rio Grande do Sul state, Brazil. Neotrop Entomol. 2004;33:709–16.
Article
CAS
Google Scholar
Dumas P, Barbut J, Le Ru B, Silvain JF, Clamens AL, d'Alencon E, Kergoat GJ. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenee, 1852 (Lepidoptera, Noctuidae). PLoS One. 2015;10:e0122407. doi:10.1371/journal.pone.0122407
Dumas P, Legeai F, Lemaitre C, Scaon E, Orsucci M, Labadie K, Gimenez S, Clamens AL, Henri H, Vavre F, et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species? Genetica. 2015;143:305–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groot AT, Marr M, Schofl G, Lorenz S, Svatos A, Heckel DG. Host strain specific sex pheromone variation in Spodoptera frugiperda. Front Zool. 2008;5 doi:10.1186/1742–9994–1185-1120.
Juarez ML, Murua MG, Garcia MG, Ontivero M, Vera MT, Vilardi JC, Groot AT, Castagnaro AP, Gastaminza G, Willink E. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J Econ Entomol. 2012;105:573–82.
Article
PubMed
Google Scholar
Pashley DP, Hammond AM, Hardy TN. Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera, Noctuidae). Ann Entomol Soc Am. 1992;85:400–5.
Article
Google Scholar
Prowell DP, McMichael M, Silvain JF. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann Entomol Soc Am. 2004;97:1034–44.
Article
CAS
Google Scholar
Juarez ML, Schofl G, Vera MT, Vilardi JC, Murua MG, Willink E, Hanniger S, Heckel DG, Groot AT. Population structure of Spodoptera frugiperda maize and rice host forms in South America: are they host strains? Entomol Exp Appl. 2014;152:182–99.
Article
CAS
Google Scholar
Pashley DP. Causes of host-associated variation in insect herbivores: an example from fall armyworm. In: Kim KC, York MPBAN, editors. Evolution of insect pests: patterns of variation. Inc.: John Wiley and Sons; 1993. p. 351–9.
Google Scholar
Busato GR, Loeck AE, Garcia MS, Bernardi O, Zart M, Nunes AM, Zazycki LCF. Compatibilidade reprodutiva entre os biótipos "milho" e "arroz" de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Rev Bras Agro. 2008;14:273–8.
Google Scholar
Eyres I, Jaquiery J, Sugio A, Duvaux L, Gharbi K, Zhou JJ, Legeai F, Nelson M, Simon JC, Smadja CM, et al. Differential gene expression according to race and host plant in the pea aphid. Mol Ecol. 2016;25:4197–215.
Article
CAS
PubMed
Google Scholar
Vogel H, Musser RO. Celorio-Mancera MdlP. Transcriptome responses in herbivorous insects towards host plant and toxin feeding. Annual Plant Reviews. 2014;47:197–234.
Article
CAS
Google Scholar
Via S. Ecological genetics and host adaptation in herbivorous insects - the experimental study of evolution in natural and agricultural systems. Annu Rev Entomol. 1990;35:421–46.
Article
CAS
PubMed
Google Scholar
Kergoat GJ, Prowell DP, Le Ru BP, Mitchell A, Dumas P, Clamens AL, Condamine FL, Silvain JF. Disentangling dispersal, vicariance and adaptive radiation patterns: a case study using armyworms in the pest genus Spodoptera (Lepidoptera: Noctuidae). Mol Phylogenet Evol. 2012;65:855–70.
Article
PubMed
Google Scholar
Ragland GJ, Almskaar K, Vertacnik KL, Gough HM, Feder JL, Hahn DA, Schwarz D. Differences in performance and transcriptome-wide gene expression associated with Rhagoletis (Diptera: Tephritidae) larvae feeding in alternate host fruit environments. Mol Ecol. 2015;24:2759–76.
Article
CAS
PubMed
Google Scholar
Kasten Jr. P, Precetti AACM, Parra JRP. Dados biológicos comparativos de Spodoptera frugiperda (J.E. Smith, 1797) em duas dietas artificiais e substrato natural. Rev Agri 1978;53:68–78.
Nagoshi RN, Meagher R. Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. Insect Mol Biol. 2003;12:453–8.
Article
CAS
PubMed
Google Scholar
Y-J L, Kochert GD, Isenhourt DJ, Adang MJ. Molecular characterization of a strain-specific repeated DNA sequence in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insect Mol Biol. 1994;3:123–30.
Article
Google Scholar
Zar JH. Biostatistical analysis. New Jersey: Pearson; 2010.
Google Scholar
Hansen KD, Wu Z, Irizarry RA, Leek JT. Sequencing technology does not eliminate biological variability. Nat Biotechnol. 2011;29:572–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.
Article
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.
Article
CAS
PubMed
Google Scholar
Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WEG, Wetter T, Suhai S. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 2004;14:1147–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pruitt KD, Tatusova T, Maglott DRNCBI. Reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35:D61–5.
Article
CAS
PubMed
Google Scholar
Rawlings ND, Waller M, Barrett AJ, Bateman AMEROPS. The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014;42:D503–9.
Article
CAS
PubMed
Google Scholar
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015;43:D130–7.
Article
CAS
PubMed
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–30.
Article
CAS
PubMed
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12: doi:10.1186/1471–2105–1112-1323.
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Kadota K, Nishiyama T, Shimizu K. A normalization strategy for comparing tag count data. Algorithm Mol Biol. 2012;7:5. doi:10.1186/1748-7188-1187-1185.
Supek F, Bosnjak M, Skunca N, Smuc TREVIGO. Summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22:1600–7.
Article
CAS
PubMed
Google Scholar
Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev. 2008;40:553–624.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy A, Walker WB, Vogel H, Chattington S, Larsson MC, Anderson P, Heckel DG, Schlyter F. Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochem Molec. 2016;71:91–105.
Article
CAS
Google Scholar
Lima S, Dill LM. Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool. 1990;68:619–40.
Article
Google Scholar
Heidel-Fischer HM, Vogel H. Molecular mechanisms of insect adaptation to plant secondary compounds. Curr Opin Insect Sci. 2015;8:8–14.
Article
Google Scholar
Terra WR, Ferreira C, Jordão BP, Dillon RJ. Digestive Enzymes. In: Biology of the insect midgut. Edited by Lehane MJ, Billingsley PF. London: Chapman & Hall; 1996.
Terra WR, Ferreira C. Biochemistry and molecular biology of digestion. In: Insect Molecular Biology and Biochemistry. Edited by Gilbert LI. San Diego: academic press; 2012. p. 365–418.
Chapter
Google Scholar
Breddam K. Serine carboxypeptidases. A review. Carlberg research. Communication. 1986;51:83–128.
CAS
Google Scholar
Waniek PJ, Araújo CAC, Momoli MM, Azambuja P, Hansen AM, Genta FA. Serine carboxypeptidases of Triatoma brasiliensis (Hemiptera, Reduviidae): sequence characterization, expression pattern and activity localization. J Insect Physiol. 2014;63:9–20.
Article
CAS
PubMed
Google Scholar
Celorio-Mancera MD, Heckel DG, Vogel H. Transcriptional analysis of physiological pathways in a generalist herbivore: responses to different host plants and plant structures by the cotton bollworm, Helicoverpa armigera. Entomol Exp Appl. 2012;144:123–33.
Article
Google Scholar
Koenig C, Bretschneider A, Heckel DG, Grosse-Wilde E, Hansson BS, Vogel H. The plastic response of Manduca sexta to host and non-host plants. Insect Biochem Molec. 2015;63:72–85.
Article
CAS
Google Scholar
Perera OP, Shelby KS, Popham HJR, Gould F, Adang MJ, Jurat-Fuentes JL. Generation of a transcriptome in a model lepidopteran pest, Heliothis virescens, using multiple sequencing strategies for profiling midgut gene expression. PLoS One. 2015;10:e0128563. doi:10.1371/journal.pone.0128563
Feyereisen R, Insect CYP. genes and P450 enzymes. In: Insect Molecular Biology and Biochemistry. Edited by Gilbert LI. San Diego: academic press; 2012. p. 236–316.
Chapter
Google Scholar
Feyereisen R. Insect cytochrome P450. In: Science CMI, editor. Gilbert LE, Iatrou K, gill SS, vol. 4. New York: Elsevier Pergamon; 2005. p. 1–77.
Google Scholar
Souza TP, Dias RO, Castelhano EC, Brandão MM, Moura DS, Silva-Filho MC. Comparative analysis of expression profiling of the trypsin and chymotrypsin genes from Lepidoptera species with different levels of sensitivity to soybean peptidase inhibitors. Comp Biochem Physiol B: Biochem Mol Biol. 2016;196–197:67–73.
Article
Google Scholar
Kanost MR, Clem RJ. Insect proteases. In: Insect Molecular Biology and Biochemistry. Edited by Gilbert LI. San Diego: academic press; 2012. p. 347–64.
Google Scholar
Klun JA, Tipton CL, Brindley TA. 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-1 (Dimboa) an active agent in resistance of maize to European corn borer. J Econ Entomol. 1967;60:1529–33.
Article
CAS
Google Scholar
Rostas M. The effects of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one on two species of Spodoptera and the growth of Setosphaeria turcica in vitro. J Pest Sci. 2007;80:35–41.
Article
Google Scholar
Wouters FC, Gershenzon J, Vassão DG. Benzoxazinoids: reactivity and modes of action of a versatile class of plant chemical defenses. J Braz Chem Soc. 2016;27:1379–97.
CAS
Google Scholar
Niemeyer HM. Hydroxamic acids (4-Hydroxy-1,4-Benzoxazin-3-ones), defense chemicals in the Gramineae. Phytochemistry. 1988;27:3349–58.
Article
CAS
Google Scholar
Houseman JG, Campos F, Thie NMR, Philogene BJR, Atkinson J, Morand P, Arnason JT. Effect of the maize-derived compounds DIMBOA and MBOA on growth and digestive processes of European corn borer (Lepidoptera, Pyralidae). J Econ Entomol. 1992;85:669–74.
Article
CAS
Google Scholar
Ortego F, Ruiz M, Castanera P. Effect of DIMBOA on growth and digestive physiology of Sesamia nonagrioides (Lepidoptera : Noctuidae) larvae. J Insect Physiol. 1998;44:95–101.
Article
CAS
PubMed
Google Scholar
Niemeyer HM. Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. J Agri Food Chem. 2009;57:1677–96.
Article
CAS
Google Scholar
Feng R, Houseman JG, Downe AER, Atkinson J, Arnason JT. Effects of 2,4-Dihydroxy-7-methoxy-l,4-benzoxazin-3-one (DIMBOA) and 6-Methoxybenzoxazolinone (MBOA) on the detoxification processes in the larval midgut of the European corn borer. Pestic Biochem Phys. 1992;44:147–54.
Article
CAS
Google Scholar
Yan F, Xu C, Li S, Lin C, Li J. Effects of DIMBOA on several enzymatic systems in Asian corn borer, Ostrinia furnacalis (Guenee). J Chem Ecol. 1995;21:2047–56.
Article
CAS
PubMed
Google Scholar
Glauser G, Marti G, Villard N, Doyen GA, Wolfender JL, Turlings TCJ, Erb M. Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Plant J. 2011;68:901–11.
Article
CAS
PubMed
Google Scholar