D'Haese CA. Morphological appraisal of Collembola phylogeny with special emphasis on Poduromorpha and a test of the aquatic origin hypothesis. Zool Scr. 2003;32(6):563–86.
Article
Google Scholar
Misof B, Liu SL, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346(6210):763–7.
Article
CAS
PubMed
Google Scholar
Stevens MI, Greenslade P, Hogg ID, Sunnucks P. Southern hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol. 2006;23(5):874–82.
Article
CAS
PubMed
Google Scholar
Nardi F, Spinsanti G, Boore JL, Carapelli A, Dallai R, Frati F. Response to comment on "hexapod origins: monophyletic or paraphyletic? ". Science. 2003;301(5639):1482.
Carapelli A, Comandi S, Convey P, Nardi F, Frati F. The complete mitochondrial genome of the Antarctic springtail Cryptopygus Antarcticus (Hexapoda : Collembola). BMC Genomics. 2008;9:315.
Delsuc F, Phillips MJ, Penny D. Comment on "hexapod origins: monophyletic or paraphyletic? ". Science. 2003;301(5639):1482–3.
Article
CAS
PubMed
Google Scholar
Chiari Y, Cahais V, Galtier N, Delsuc F. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol. 2012;10:65.
Peters RS, Meusemann K, Petersen M, Mayer C, Wilbrandt J, Ziesmann T, Donath A, Kjer KM, Aspock U, Aspock H, et al. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evol Biol. 2014;14(1):52.
Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kuck P, Ebersberger I, Walzl M, Pass G, Breuers S, et al. A Phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol. 2010;27(11):2451–64.
Article
CAS
PubMed
Google Scholar
Faddeeva-Vakhrusheva A, Derks MFL, Anvar SY, Agamennone V, Suring W, Smit S, van Straalen NM, Roelofs D. Gene family evolution reflects adaptation to soil environmental stressors in the genome of the collembolan Orchesella Cincta. Genome Biol Evol. 2016;8(7):2106–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grove SJ. Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst. 2002;33:1–23.
Article
Google Scholar
Leschen RAB. Evolution of saproxylic and mycophagous Coleoptera in New Zealand. In: Grove SJ, editor. Insect Biodiversity and Dead Wood: Proceedings of a Symposium for the 22nd International Congress of Entomology. Southern Research Station, Asheville, NC: Department of Agriculture, Forest Service; 2006. p. 1–8.
Google Scholar
Buckley TR, Krosch M, Leschen RAB. Evolution of New Zealand insects: summary and prospectus for future research. Austral Entomol. 2015;54(1):1–27.
Article
Google Scholar
Stevens M, McCartney J, Stringer IAN. New Zealand’s forgotten biodiversity: new techniques reveal new records for ‘giant’ springtails. New Zealand Entomologist. 2007;30:79–84.
Article
Google Scholar
Stevens MI, Winter DJ, Morris R, McCartney J, Greenslade P. New Zealand's giant Collembola: new information on distribution and morphology for Holacanthella Borner, 1906 (Neanuridae : Uchidanurinae). New Zeal J Zool. 2007;34(1):63–78.
Article
Google Scholar
Faddeeva-Vakhrusheva A, Kraaijeveld K, Derks MFL, Anvar SY, Agamennone V, Suring W, Kampfraath AA, Ellers J, Le Ngoc G, van Gestel CAM, et al. Coping with living in the soil: the genome of the parthenogenetic springtail Folsomia Candida. BMC Genomics. 2017;18(1):493.
Article
PubMed
PubMed Central
Google Scholar
Wu C, Crowhurst RN, Dennis AB, Twort VG, Liu SL, Newcomb RD, Ross HA, Buckley TR. De novo transcriptome analysis of the common New Zealand stick insect Clitarchus hookeri (Phasmatodea) reveals genes involved in olfaction, digestion and sexual reproduction. PLoS One. 2016;11(6)e0157783.
Chipman AD, Ferrier DEK, Brena C, JX Q, Hughes DST, Schroder R, Torres-Oliva M, Znassi N, Jiang HY, Almeida FC, et al. The first Myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol. 2014;12(11)
Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, Osborne EJ, Dermauw W, Phuong CTN, Ortego F, et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature. 2011;479(7374):487–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenny NJ, Shen X, Chan TTH, Wong NWY, Chan TF, Chu KH, Lam HM, Hui JHL. Genome of the rusty millipede, Trigoniulus Corallinus, illuminates diplopod, Myriapod, and arthropod evolution. Genome Biol Evol. 2015;7(5):1280–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
McTaggart SJ, Conlon C, Colbourne JK, Blaxter ML, Little TJ. The components of the Daphnia Pulex immune system as revealed by complete genome sequencing. BMC Genomics. 2009;10:175.
Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Bucher G, Friedrich M, Grimmelikhuijzen CJP, et al. The genome of the model beetle and pest Tribolium Castaneum. Nature. 2008;452(7190):949–55.
Article
CAS
PubMed
Google Scholar
Wang XH, Fang XD, Yang PC, Jiang XT, Jiang F, Zhao DJ, Li BL, Cui F, Wei JN, Ma CA, et al. The locust genome provides insight into swarm formation and long-distance flight. Nat Commun. 2014;5:1–9.
Google Scholar
Zhan S, Merlin C, Boore JL, Reppert SM. The monarch butterfly genome yields insights into long-distance migration. Cell. 2011;147(5):1171–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, Mitchell RF, Waterhouse RM, Ahn SJ, Arsala D, et al. Genome of the Asian longhorned beetle (Anoplophora Glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol. 2016;17
Gempe T, Beye M. Function and evolution of sex determination mechanisms, genes and pathways in insects. BioEssays. 2011;33(1):52–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ. Evolution of DNA methylation across insects (vol 34, pg 654, 2017). Mol Biol Evol. 2017;34(4):1025–1025.
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
Article
CAS
PubMed
Google Scholar
Feng SH, Cokus SJ, Zhang XY, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, et al. Conservation and divergence of methylation patterning in plants and animals. P Natl Acad Sci USA. 2010;107(19):8689–94.
Article
CAS
Google Scholar
Suzuki MM, Kerr ARW, De Sousa D, Bird A. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res. 2007;17(5):625–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–9.
Article
CAS
PubMed
Google Scholar
Sved J, Bird A. The expected equilibrium of the Cpg dinucleotide in vertebrate genomes under a mutation model. P Natl Acad Sci USA. 1990;87(12):4692–6.
Article
CAS
Google Scholar
Keller TE, Han P, Yi SV. Evolutionary transition of promoter and gene body DNA methylation across invertebrate-vertebrate boundary. Mol Biol Evol. 2016;33(4):1019–28.
Article
CAS
PubMed
Google Scholar
Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 2010;8(11):e1000506.
Raddatz G, Guzzardo PM, Olova N, Fantappie MR, Rampp M, Schaefer M, Reik W, Hannon GJ, Lyko F. Dnmt2-dependent methylomes lack defined DNA methylation patterns. P Natl Acad Sci USA. 2013;110(21):8627–31.
Article
Google Scholar
Takayama S, Dhahbi J, Roberts A, Mao GX, Heo SJ, Pachter L, Martin DIK, Boffelli D. Genome methylation in D. Melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res. 2014;24(5):821–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyko F, Maleszka R. Insects as innovative models for functional studies of DNA methylation. Trends Genet. 2011;27(4):127–31.
Article
CAS
PubMed
Google Scholar
Kriaucionis S, Heintz N. The nuclear DNA Base 5-Hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324(5929):929–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tahiliani M, Koh KP, Shen YH, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E, Deplus R, Calonne E, Hassabi B, Putmans P, Awe S, et al. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science. 2016;351(6270):282–5.
Article
CAS
PubMed
Google Scholar
Jeffares DC, Poole AM, Penny D. Relics from the RNA world. J Mol Evol. 1998;46(1):18–36.
Article
CAS
PubMed
Google Scholar
Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2001;2(12):919–29.
Article
CAS
PubMed
Google Scholar
Hoeppner MP, Gardner PP, Poole AM. Comparative analysis of RNA families reveals distinct repertoires for each domain of life. PLoS Comput Biol. 2012;8(11):e1002752.
Wheeler TJ, Clements J, Eddy SR, Hubley R, Jones TA, Jurka J, Smit AFA, Finn RD. Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res. 2013;41(D1):D70–82.
Article
CAS
PubMed
Google Scholar
Lindgreen S, Umu SU, Lai ASW, Eldai H, Liu WT, McGimpsey S, Wheeler NE, Biggs PJ, Thomson NR, Barquist L, et al. Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling. PLoS Comput Biol. 2014;10(10):e1003907.
Dearden PK, Wilson MJ, Sablan L, Osborne PW, Havler M, McNaughton E, Kimura K, Milshina NV, Hasselmann M, Gempe T, et al. Patterns of conservation and change in honey bee developmental genes. Genome Res. 2006;16(11):1376–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duncan EJ, Benton MA, Dearden PK. Canonical terminal patterning is an evolutionary novelty. Dev Biol. 2013;377(1):245–61.
Article
CAS
PubMed
Google Scholar
Garcia-Fernandez J. The genesis and evolution of homeobox gene clusters. Nat Rev Genet. 2005;6(12):881–92.
Article
CAS
PubMed
Google Scholar
Lemons D, McGinnis W. Genomic evolution of Hox gene clusters. Science. 2006;313(5795):1918–22.
Article
CAS
PubMed
Google Scholar
VonAllmen G, Hogga I, Spierer A, Karch F, Bender W, Gyurkovics H, Lewis E. Splits in fruitfly Hox gene complexes. Nature. 1996;380(6570):116–116.
Lewis EB, Pfeiffer BD, Mathog DR, Celniker SE. Evolution of the homeobox complex in the Diptera. Curr Biol. 2003;13(15):R587–8.
Article
CAS
PubMed
Google Scholar
Negre B, Ranz JM, Casals F, Caceres M, Ruiz A. A new split of the hox gene complex in drosophila: relocation and evolution of the gene labial. Mol Biol Evol. 2003;20(12):2042–54.
Article
CAS
PubMed
Google Scholar
Yasukochi Y, Ashakumary LA, CC W, Yoshido A, Nohata J, Mita K, Sahara K. Organization of the Hox gene cluster of the silkworm, Bombyx Mori: a split of the Hox cluster in a non-drosophila insect. Dev Genes Evol. 2004;214(12):606–14.
Article
PubMed
Google Scholar
Bailey AM, Posakony JW. Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to notch receptor activity. Genes Dev. 1995;9(21):2609–22.
Article
CAS
PubMed
Google Scholar
Jennings B, Preiss A, Delidakis C, Bray S. The notch signaling pathway is required for enhancer of split Bhlh protein expression during neurogenesis in the drosophila embryo. Development. 1994;120(12):3537–48.
CAS
PubMed
Google Scholar
Wurmbach E, Wech I, Preiss A. The enhancer of split complex of Drosophila Melanogaster harbors three classes of notch responsive genes. Mech Develop. 1999;80(2):171–80.
Article
CAS
Google Scholar
Dearden PK. Origin and evolution of the enhancer of split complex. BMC Genomics. 2015;16:712.
Duncan EJ, Dearden PK. Evolution of a genomic regulatory domain: the role of gene co-option and gene duplication in the enhancer of split complex. Genome Res. 2010;20(7):917–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duncan EJ, Wilson MJ, Smith JM, Dearden PK. Evolutionary origin and genomic organisation of runt-domain containing genes in arthropods. BMC Genomics. 2008;9:558.
Herpin A, Schartl M. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep. 2015;16(10):1260–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matson CK, Zarkower D. Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet. 2012;13(3):163–74.
CAS
PubMed
PubMed Central
Google Scholar
An WQ, Cho SY, Ishii H, Wensink PC. Sex-specific and non-sex-specific oligomerization domains in both of the doublesex transcription factors from drosophila melanogaster. Mol Cell Biol. 1996;16(6):3106–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geuverink E, Beukeboom LW. Phylogenetic distribution and evolutionary dynamics of the sex determination genes doublesex and transformer in insects. Sex Dev. 2014;8(1–3):38–49.
Article
CAS
PubMed
Google Scholar
Price DC, Egizi A, Fonseca DM. The ubiquity and ancestry of insect doublesex. Sci Rep-Uk. 2015;5:13068.
Verhulst EC, van de Zande L, Beukeboom LW. Insect sex determination: it all evolves around transformer. Curr Opin Genet Dev. 2010;20(4):376–83.
Article
CAS
PubMed
Google Scholar
Traut W, Mimi T, Ikeo K, Sahara K. Phylogeny of the sex-determining gene sex-lethal in insects. Genome. 2006;49(3):254–62.
Article
CAS
PubMed
Google Scholar
Hopkin SP. Biology of the springtails (Insecta: Collembola); 1997. p. 330.
Google Scholar
Wigglesworth VB. The principles of insect physiology, vol. 763; 2012.
Google Scholar
Croset V, Cummins SF, Benton R. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. J Neurogenet. 2010;24:30–1.
Google Scholar
Hallem EA, Dahanukar A, Carlson JR. Insect odor and taste receptors. Annu Rev Entomol. 2006;51:113–35.
Article
CAS
PubMed
Google Scholar
Saina M, Busengdal H, Sinigaglia C, Petrone L, Oliveri P, Rentzsch F, Benton R. A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning. Nat Commun. 2015;6:6243.
Robertson HM, Kent LB. Evolution of the gene lineage encoding the carbon dioxide receptor in insects. J Insect Sci. 2009;9:19.
Robertson HM, Warr CG, Carlson JR. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila Melanogaster. P Natl Acad Sci USA. 2003;100:14537–42.
Article
CAS
Google Scholar
Penalva-Arana DC, Lynch M, Robertson HM. The chemoreceptor genes of the waterflea Daphnia Pulex: many grs but no Ors. BMC Evol Biol. 2009;9:79.
Missbach C, Dweck HK, Vogel H, Vilcinskas A, Stensmyr MC, Hansson BS, Grosse-Wilde E. Evolution of insect olfactory receptors. Elife. 2014;3:e02115.
PubMed
PubMed Central
Google Scholar
Arakane Y, Muthukrishnan S. Insect chitinase and chitinase-like proteins. Cell Mol Life Sci. 2010;67(2):201–16.
Article
CAS
PubMed
Google Scholar
Berg MP, Stoffer M, van den Heuvel HH. Feeding guilds in Collembola based on digestive enzymes. Pedobiologia. 2004;48(5–6):589–601.
Article
Google Scholar
Zhu QS, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S. Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem Molec. 2008;38(4):452–66.
Article
CAS
Google Scholar
Nakabachi A, Shigenobu S, Miyagishima S. Chitinase-like proteins encoded in the genome of the pea aphid, Acyrthosiphon Pisum. Insect Mol Biol. 2010;19:175–85.
Article
CAS
PubMed
Google Scholar
Von Ohlen T, Luce-Fedrow A, Ortega MT, Ganta RR, Chapes SK. Identification of critical host mitochondrion-associated genes during Ehrlichia chaffeensis infections. Infect Immun. 2012;80(10):3576–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galbraith DWHK, Maddox JM, Ayres NM, Sharma DP, Firoozabady E. Rapid flow cytophotometric analysis of the cell cycle in intact plant tissues. Science. 1983;220:1049–51.
Article
CAS
PubMed
Google Scholar
HB X, Luo X, Qian J, Pang XH, Song JY, Qian GR, Chen JH, Chen SL. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS One. 2012;7(12):e52249.
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27(6):863–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin N. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10–2.
Article
Google Scholar
Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. P Natl Acad Sci USA. 2011;108(4):1513–8.
Article
CAS
Google Scholar
Luo RB, Liu BH, Xie YL, Li ZY, Huang WH, Yuan JY, He GZ, Chen YX, Pan Q, Liu YJ, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1(1):18.
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27(4):578–9.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–U130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–9.
Article
CAS
PubMed
Google Scholar
Smit A, Hubley R. RepeatModeler Open-1.0. 2008–2010.
Hoede C, Arnoux S, Moisset M, Chaumier T, Inizan O, Jamilloux V, Quesneville H. PASTEC: an automatic transposable element classification tool. PLoS One. 2014;9(5):e91929.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smit A, Hubley R, Green P. RepeatMasker Open-3.0. 1996–2010.
Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC bioinformatics. 2011;12:491.
Article
PubMed
PubMed Central
Google Scholar
Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32:W309–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solovyev V, Kosarev P, Seledsov I, Vorobyev D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 2006;7 Suppl 1(S10):11–2.
Google Scholar
Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015;43(D1):D130–7.
Article
CAS
PubMed
Google Scholar
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29(22):2933–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freyhult EK, Bollback JP, Gardner PP. Exploring genomic dark matter: a critical assessment of the performance of homology search methods on noncoding RNA. Genome Res. 2007;17(1):117–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe DL, Eddy SR, et al. Rfam: Wikipedia, clans and the "decimal" release. Nucleic Acids Res. 2011;39:D141–5.
Article
CAS
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.
Article
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21.
Article
CAS
PubMed
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57(1):289–300.
Google Scholar
Elango N, Hunt BG, Goodisman MAD, Yi SV. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis Mellifera. P Natl Acad Sci USA. 2009;106(27):11206–11.
Article
CAS
Google Scholar
Fraley C, Raftery AE. Enhanced model-based clustering, density estimation, and discriminant analysis software: MCLUST. J Classif. 2003;20(2):263–86.
Article
Google Scholar
Petersen M, Meusemann K, Donath A, Dowling D, Liu SL, Peters RS, Podsiadlowski L, Vasilikopoulos A, Zhou X, Misof B, et al. Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. Bmc Bioinformatics. 2017;18:111.
Misof B, Misof K. A Monte Carlo approach successfully identifies randomness in multiple sequence alignments : a more objective means of data exclusion. Syst Biol. 2009;58(1):21–34.
Article
CAS
PubMed
Google Scholar
Kuck P, Meusemann K, Dambach J, Thormann B, von Reumont BM, Wagele JW, Misof B. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees. Front Zool. 2010;7:10.
Kuck P, Meusemann K. FASconCAT: convenient handling of data matrices. Mol Phylogenet Evol. 2010;56(3):1115–8.
Article
PubMed
CAS
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42(D1):D222–30.
Article
CAS
PubMed
Google Scholar
Misof B, Meyer B, von Reumont BM, Kuck P, Misof K, Meusemann K. Selecting informative subsets of sparse supermatrices increases the chance to find correct trees. Bmc Bioinformatics. 2013;14:348.
Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29(6):1695–701.
Article
CAS
PubMed
Google Scholar
Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol. 2014;14:82.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25(7):1307–20.
Article
CAS
PubMed
Google Scholar
Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18(5):691–9.
Article
CAS
PubMed
Google Scholar
Kosiol C, Goldman N. Different versions of the Dayhoff rate matrix. Mol Biol Evol. 2005;22(2):193–9.
Article
CAS
PubMed
Google Scholar
Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8(3):275–82.
CAS
PubMed
Google Scholar
Henikoff S, Henikoff JG. Amino-acid substitution matrices from protein blocks. P Natl Acad Sci USA. 1992;89(22):10915–9.
Article
CAS
Google Scholar
Yang ZH. Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol. 1996;11(9):367–72.
Article
CAS
PubMed
Google Scholar
Le SQ, Dang CC, Gascuel O. Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol Biol Evol. 2012;29(10):2921–36.
Article
CAS
PubMed
Google Scholar
Hurvich CM, Tsai CL. Regression and time-series model selection in small samples. Biometrika. 1989;76(2):297–307.
Article
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.
Article
CAS
PubMed
Google Scholar
Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user Interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27(2):221–4.
Article
CAS
PubMed
Google Scholar