Falkowski PG, Barber RT, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science. 1998;281:200–6.
Article
CAS
PubMed
Google Scholar
Lewis WM. The diatom sex clock and its evolutionary significance. Am Nat. 1984;123(1):73–80.
Article
Google Scholar
Livnat A, Papadimitriou C, Dushoff J, Feldman MW. A mixability theory for the role of sex in evolution. Proc Natl Acad Sci. 2008;105(50):19803–8. doi:10.1073/pnas.0803596105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holtermann KE, Bates SS, Trainer VL, Odell A, Virginia Armbrust E. Mass sexual reproduction in the toxigenic diatoms Pseudo-nitzschia australis and P. pungens (Bacillariophyceae) on the Washington coast, USA. J Phycol. 2010;46(1):41–52. doi:10.1111/j.1529-8817.2009.00792.x.
Article
CAS
Google Scholar
Sarno D, Zingone A, Montresor MA. Massive and simultaneous sex event of two Pseudo-nitzschia species. Deep-Sea Res II Top Stud Oceanogr. 2010;57:248–55. doi:10.1016/j.dsr2.2009.09.
Article
Google Scholar
Montresor M, Vitale L, D'Alelio D, Ferrante MI. Sex in marine planktonic diatoms: insights and challenges. Perspectives in Phycology. 2016;3(2):61–75.
Article
Google Scholar
Armbrust EV. Identification of a new gene family expressed during the onset of sexual reproduction in the centric diatom Thalassiosira weissflogii. Appl Environ Microbiol. 1999;65(7):3121–8.
CAS
PubMed
PubMed Central
Google Scholar
Sato S, Beakes G, Idei M, Nagumo T, Mann DG. Novel sex cells and evidence for sex pheromones in diatoms. PLoS One. 2011;6(10):e26923. doi:10.1371/journal.pone.0026923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillard J, Frenkel J, Devos V, Sabbe K, Paul C, Rempt M, et al. Metabolomics enables the structure elucidation of a diatom sex pheromone. Angew Chem Int Ed. 2013;52(3):854–7. doi:10.1002/anie.201208175.
Article
CAS
Google Scholar
Moeys S, Frenkel J, Lembke C, Gillard JTF, Devos V, Van den Berge K, et al. A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci Rep. 2016;6:19252. doi:10.1038/srep19252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patil S, Moeys S, von Dassow P, Huysman MJJ, Mapleson D, De Veylder L, et al. Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta. BMC Genomics. 2015;16(1):930. doi:10.1186/s12864-015-1983-5.
Article
PubMed
PubMed Central
Google Scholar
Lodish H, Berk AS, Lawrence Z, Matsudaira P, Baltimore D, Darnell J. Molecular cell biology. 4 ed. Biochemistry and molecular biology education, vol 3. In: Elsevier Freeman & Co.; 2000.
Google Scholar
Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL. Chlamydomonas Kinesin-II–dependent Intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol. 1998;141(4):993–1008. doi:10.1083/jcb.141.4.993.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ou G, Koga M, Blacque OE, Murayama T, Ohshima Y, Schafer JC, et al. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol Biol Cell. 2007;18(5):1554–69. doi:10.1091/mbc.E06-09-0805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Follit JA, Xu F, Keady B, Pazour GJ. Characterization of mouse IFT complex B. Cell Motil Cytoskeleton. 2009;66(8):457–68. doi:10.1002/cm.20346.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Dam TJP, Townsend MJ, Turk M, Schlessinger A, Sali A, Field MC, et al. Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proc Natl Acad Sci. 2013;110(17):6943–8. doi:10.1073/pnas.1221011110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nanjappa D, Kooistra WHCF, Zingone AA. Reappraisal of the genus Leptocylindrus (Bacillariophyta), with the addition of three species and the erection of Tenuicylindrus gen. Nov. J Phycol. 2013;49:917–36.
PubMed
Google Scholar
Nanjappa D, Audic S, Romac S, Kooistra WHCF, Zingone A. Assessment of species diversity and distribution of an ancient diatom lineage using a DNA metabarcoding approach. PLoS One. 2014;9(8)
Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci. 2016;113(11):E1516–E25. doi:10.1073/pnas.1509523113.
Article
CAS
PubMed
PubMed Central
Google Scholar
French IIIFW, Hargraves PE. Population dynamics of the spore-forming diatom Leptocylindrus danicus in Narragansett Bay, Rhode Island. J Phycol. 1986;22:411–20.
Article
Google Scholar
French IIIFW, Hargraves PE. Spore formation in the life cycles of the diatoms Chaetoceros diadema and Leptocylindrus danicus. J Phycol. 1985;21:477–83.
Article
Google Scholar
Nanjappa D, D’Ippolito G, Fontana A, Zingone A. Investigating the metabolic plasticity in the diatom species Leptocylindrus danicus and Leptocylindrus aporus. The 2nd International Conference on Algal Biomass, Biofuels and Bioproducts. (10–13 June, ) 10–13 June, 2012; San Diego, USA 2012.
Nanjappa D, D’Ippolito G, Gallo C, Zingone A, Fontana A. Oxylipin diversity in the diatom family Leptocylindraceae reveals DHA derivatives in marine diatoms. Marine Drugs. 2014;12:368–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santamaria G, Esposito CL, Cerchia L, Benvenuto G, Nanjappa D, Sarno D, et al. Aptamers are an innovative and promising tool for phytoplankton taxonomy and biodiversity research. Chem Ecol. 2015;31(1):92–103. doi:10.1080/02757540.2014.966700.
Article
CAS
Google Scholar
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The marine microbial eukaryote Transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12(6):e1001889. doi:10.1371/journal.pbio.1001889.
Article
PubMed
PubMed Central
Google Scholar
French F, Hargraves PE. Physiological characteristics of plankton diatom resting spores. Marine. Biol Lett. 1980;1:185–95.
CAS
Google Scholar
Scholey JM. Intraflagellar transport. Annual Review of Cell and Developmental Biology. 2003;19(1):423–43. doi:10.1146/annurev.cellbio.19.111401.091318.
Piperno G, Ramanis Z, Smith EF, Sale WS. Three distinct inner dynein arms in Chlamydomonas Flagella: molecular composition and location in the axoneme. J Cell Biol. 1990;110(2):379–89. doi:10.1083/jcb.110.2.379.
Article
CAS
PubMed
Google Scholar
Wloga D, Webster DM, Rogowski K, Bré M-H, Levilliers N, Jerka-Dziadosz M, et al. TTLL3 is a tubulin glycine ligase that regulates the assembly of cilia. Dev Cell. 2009;16(6):867–76. doi:10.1016/j.devcel.2009.04.008.
Article
CAS
PubMed
Google Scholar
Hellman NE, Liu Y, Merkel E, Austin C, Le Corre S, Beier DR, et al. The zebrafish foxj1a transcription factor regulates cilia function in response to injury and epithelial stretch. Proc Natl Acad Sci. 2010;107(43):18499–504. doi:10.1073/pnas.1005998107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Town T, Breunig JJ, Sarkisian MR, Spilianakis C, Ayoub AE, Liu X, et al. The stumpy gene is required for mammalian ciliogenesis. Proc Natl Acad Sci. 2008;105(8):2853–8. doi:10.1073/pnas.0712385105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu G, Nagasato C, Oka S, Cock JM, Motomura T. Proteomics analysis of heterogeneous flagella in brown algae (Stramenopiles). Protist. 2014;165(5):662–75. doi:10.1016/j.protis.2014.07.007.
Article
CAS
PubMed
Google Scholar
Nanjappa D, Kooistra WHCF, M. M, Zingone A. Revisiting the taxonomy of the genus Leptocylindrus Cleve (Bacillariophyceae) in the Gulf of Naples using morphological, molecular and physiological approaches. In: Sabbe K, Van de Vijver B, Vyverman W, editors. Twentysecond International Diatom Symposium, Aula Academica, Ghent, 26–31 August 2012 Abstracts VLIZ Special Publication 58; 2012 p. 197.
iMicrobe. https://imicrobe.us/project/view/104. Accessed 25 Feb 2017.
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol İ. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19(6):1117–23. doi:10.1101/gr.089532.108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012;1(1):1–6. doi:10.1186/2047-217x-1-18.
Article
Google Scholar
Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, Wetter T, et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 2004;14(6):1147–59. doi:10.1101/gr.1917404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6. doi:10.1093/bioinformatics/bti610.
Article
CAS
PubMed
Google Scholar
Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34(suppl 2):W293–W7. doi:10.1093/nar/gkl031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27(1):29–34. doi:10.1093/nar/27.1.29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4(1):1–14. https://doi.org/10.1186/1471-2105-4-41.
Article
Google Scholar
Blüthgen N, Brand K, Cajavec B, Swat M, Herzel H, Beule D. Biological profiling of gene groups utilizing gene ontology. Genome Informatics. 2005;16(1):106–15.
PubMed
Google Scholar
Guillard RL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) gran. Can J Microbiol. 1962;8:229–39.
Article
CAS
PubMed
Google Scholar
Hargraves PE. Studies on marine plankton diatoms. II. Resting spores morphology. J Phycol. 1976;12:118–28.
Google Scholar
Muller PY, Janovjak H, Miserez AR, Dobbie Z. Processing of gene expression data generated by quantitative real-time RT-PCR. BioTechniques. 2002;32:1372–9.
CAS
PubMed
Google Scholar
Edgar RC. Quality measures for protein alignment benchmarks. Nucleic Acids Res. 2010; doi:10.1093/nar/gkp1196.
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–90. doi:10.1093/bioinformatics/btl446.
Article
CAS
PubMed
Google Scholar
Whelan S, Goldman NA. General empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18(5):691–9.
Article
CAS
PubMed
Google Scholar
Yang Z, Goldman N, Friday A. Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Mol Biol Evol. 1994;11(2):316–24.
CAS
PubMed
Google Scholar