Pitnick S, Birkhead TR, Hosken DJ. Sperm biology: an evolutionary perspective. 1st ed. Amsterdam: Academic Press/Elsevier; 2009.
Google Scholar
Till-Bottraud I, Joly D, Lachaise D, Snook RR. Pollen and sperm heteromorphism: convergence across kingdoms? J Evol Biol. 2005;18:1–18.
Article
CAS
PubMed
Google Scholar
Swallow JG, Wilkinson GS. The long and short of sperm polymorphisms in insects. Biol Rev Camb Philos Soc. 2002;77:153–82.
Article
PubMed
Google Scholar
Meves F. Ueber oligopyrene und apyrene Spermien und über ihre Entstehung, nach Beobachtungen an Paludina und Pygaera. Arch Für Mikrosk Anat. 1902;61:1–84.
Article
Google Scholar
Sahara K, Kawamura N. Double copulation of a female with sterile diploid and polyploid males recovers fertility in Bombyx mori. Zygote Camb Engl. 2002;10:23–9.
Article
Google Scholar
Friedländer M. Control of the eupyrene–apyrene sperm dimorphism in Lepidoptera. J Insect Physiol. 1997;43:1085–92.
Article
PubMed
Google Scholar
Friedländer M, Seth RK, Reynolds SE. Eupyrene and Apyrene sperm: dichotomous spermatogenesis in Lepidoptera. Adv Insect Physiol. 2005;32:206–308.
Article
Google Scholar
Snook RR, Hosken DJ, Karr TL. The biology and evolution of polyspermy: insights from cellular and functional studies of sperm and centrosomal behavior in the fertilized egg. Reproduction. 2011;142:779–92.
Article
PubMed
Google Scholar
Whittington E, Zhao Q, Borziak K, Walters JR, Dorus S. Characterisation of the Manduca sexta sperm proteome: genetic novelty underlying sperm composition in Lepidoptera. Insect Biochem Mol Biol. 2015;62:183–93.
Article
CAS
PubMed
Google Scholar
Oberhauser K, Frey D. Coercive mating by overwintering male monarch butterflies. In: Hoth J, Merino L, Oberhauser K, Pisanty I, Price S, Wilkinson T, editors. 1997 North American Conference on the Monarch Butterfly. Canada: Commission for Environmental Cooperation. 1997. pp. 67-78.
Sasaki M, Riddiford LM. Regulation of reproductive behaviour and egg maturation in the tobacco hawk moth, Manduca sexta. Physiol Entomol. 1984;9:315–27.
Article
Google Scholar
Stringer IAN, Giebultowicz JM, Riddiford LM. Role of the bursa copulatrix in egg maturation and reproductive behavior of the tobacco hawk moth, Manduca sexta. Int J Invertebr Reprod Dev. 1985;8:83–91.
Article
Google Scholar
Solensky MJ, Oberhauser KS. Male monarch butterflies, Danaus plexippus, adjust ejaculates in response to intensity of sperm competition. Anim Behav. 2009;77:465–72.
Article
Google Scholar
Karr TL, Walters JR. Panning for sperm gold: isolation and purification of apyrene and eupyrene sperm from lepidopterans. Insect Biochem Mol Biol. 2015;63:152–8.
Article
CAS
PubMed
Google Scholar
Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44:11033.
Article
PubMed
PubMed Central
Google Scholar
Deutsch EW, Mendoza L, Shteynberg D, Farrah T, Lam H, Tasman N, et al. A guided tour of the trans-proteomic pipeline. Proteomics. 2010;10:1150–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002;74:5383–92.
Article
CAS
PubMed
Google Scholar
Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75:4646–58.
Article
CAS
PubMed
Google Scholar
Shteynberg DD., Mendoza L, Slagel J, Lam H, Nesvizhskii AI, Moritz R. PTMProphet: TPP software for validation of modified site locations on post-translationally modified peptides. 60th American Society for Mass Spectrometry (ASMS) Annual Conference, Vancouver, Canada, 2012.
Braisted JC, Kuntumalla S, Vogel C, Marcotte EM, Rodrigues AR, Wang R, et al. The APEX quantitative proteomics tool: generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinformatics. 2008;9:529.
Article
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Zhan S, Merlin C, Boore JL, Reppert SM. The monarch butterfly genome yields insights into long-distance migration. Cell. 2011;147:1171–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhan S, Reppert SM. MonarchBase: the monarch butterfly genome database. Nucleic Acids Res. 2013;41:D758–63.
Article
CAS
PubMed
Google Scholar
Kent WJ. BLAT---the BLAST-like alignment tool. Genome Res. 2002;12:656–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.
Article
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
Article
CAS
PubMed
Google Scholar
Zdobnov EM, Apweiler R. InterProScan--an integration platform for the signature-recognition methods in InterPro. Bioinforma Oxf Engl. 2001;17:847–8.
Article
CAS
Google Scholar
Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics. 2011;12:124.
Article
PubMed
PubMed Central
Google Scholar
Kanost MR, Arrese EL, Cao X, Chen Y-R, Chellapilla S, Goldsmith MR, et al. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochem Mol Biol. 2016;76:118–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wasbrough ER, Dorus S, Hester S, Howard-Murkin J, Lilley K, Wilkin E, et al. The Drosophila melanogaster sperm proteome-II (DmSP-II). J Proteome. 2010;73:2171–85.
Article
CAS
Google Scholar
Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV. OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res. 2013;41:D358–65.
Article
CAS
PubMed
Google Scholar
Kawahara AY, Breinholt JW. Phylogenomics provides strong evidence for relationships of butterflies and moths. Proc R Soc B Biol Sci. 2014;281:20140970.
Article
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–7.
Article
CAS
PubMed
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Article
PubMed
Google Scholar
Bodenhofer U, Bonatesta E, Horejš-Kainrath C, Hochreiter S. msa: an R package for multiple sequence alignment. Bioinformatics. 2015;31:3997–9.
CAS
PubMed
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
Article
CAS
PubMed
Google Scholar
Schliep KP. Phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.
Article
CAS
PubMed
Google Scholar
Challis RJ, Kumar S, Dasmahapatra KKK, Jiggins CD, Blaxter M. Lepbase: the Lepidopteran genome database. bioRxiv 056994; doi: 10.1101/056994.
Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simão FA, Ioannidis P, et al. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res. 2017;45:D744–9.
Article
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Article
CAS
PubMed
Google Scholar
Joti P, Ghosh-Roy A, Ray K. Dynein light chain 1 functions in somatic cyst cells regulate spermatogonial divisions in Drosophila. Sci Rep. 2011;1:173.
Article
PubMed
PubMed Central
Google Scholar
Noguchi T. A role for actin dynamics in individualization during spermatogenesis in Drosophila Melanogaster. Development. 2003;130:1805–16.
Article
CAS
PubMed
Google Scholar
Dorus S, Freeman ZN, Parker ER, Heath BD, Karr TL. Recent origins of sperm genes in Drosophila. Mol Biol Evol. 2008;25:2157–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terhzaz S, Cabrero P, Chintapalli VR, Davies S-A, Dow JAT. Mislocalization of mitochondria and compromised renal function and oxidative stress resistance in Drosophila SesB mutants. Physiol Genomics. 2010;41:33–41.
Article
CAS
PubMed
Google Scholar
Castrillon DH, Gönczy P, Alexander S, Rawson R, Eberhart CG, Viswanathan S, et al. Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis. Genetics. 1993;135:489–505.
CAS
PubMed
PubMed Central
Google Scholar
Tokuyasu KT. Dynamics of spermiogenesis in Drosophila melanogaster. VI. Significance of “onion” nebenkern formation. J Ultrastruct Res. 1975;53:93–112.
Article
CAS
PubMed
Google Scholar
Park J, Kim Y, Choi S, Koh H, Lee S-H, Kim J-M, et al. Drosophila Porin/VDAC affects mitochondrial morphology. PLoS One. 2010;5:e13151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutchens JA, Hoyle HD, Turner FR, Raff EC. Structurally similar Drosophila Alpha-tubulins are functionally distinct in vivo. Mol Biol Cell. 1997;8:481–500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osanai M, Kasuga H, Aigaki T. Induction of motility of apyrene spermatozoa and dissociation of Eupyrene sperm bundles of the silkmoth, Bombyx mori, by initiatorin and trypsin. Invertebr Reprod Dev. 1989;15:97–103.
Article
CAS
Google Scholar
Friedländer M, Jeshtadi A, Reynolds SE. The structural mechanism of trypsin-induced intrinsic motility in Manduca sexta spermatozoa in vitro. J Insect Physiol. 2001;47:245–55.
Article
PubMed
Google Scholar
Dorus S, Busby SA, Gerike U, Shabanowitz J, Hunt DF, Karr TL. Genomic and functional evolution of the Drosophila melanogaster sperm proteome. Nat Genet. 2006;38:1440–5.
Article
CAS
PubMed
Google Scholar
Rettie EC, Dorus S. Drosophila sperm proteome evolution: insights from comparative genomic approaches. Spermatogenesis. 2012;2:213–23.
Article
PubMed
PubMed Central
Google Scholar
Arama E, Bader M, Rieckhof GE, Steller H. A ubiquitin ligase complex regulates caspase activation during sperm differentiation in Drosophila. PLoS Biol. 2007;5:e251. Bach E, editor
Article
PubMed
PubMed Central
Google Scholar
Cheng W, Ip YT, Xu Z. Gudu, an armadillo repeat-containing protein, is required for spermatogenesis in drosophila. Gene. 2013;531:294–300.
Article
CAS
PubMed
Google Scholar
Karak S, Jacobs JS, Kittelmann M, Spalthoff C, Katana R, Sivan-Loukianova E, et al. Diverse roles of axonemal dyneins in Drosophila auditory neuron function and mechanical amplification in hearing. Sci Rep. 2015;5:17085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeh S-D, Chen Y-J, Chang ACY, Ray R, She B-R, Lee W-S, et al. Isolation and properties of Gas8, a growth arrest-specific gene regulated during male gametogenesis to produce a protein associated with the sperm motility apparatus. J Biol Chem. 2002;277:6311–7.
Article
CAS
PubMed
Google Scholar
Bayram HL, Claydon AJ, Brownridge PJ, Hurst JL, Mileham A, Stockley P, et al. Cross-species proteomics in analysis of mammalian sperm proteins. J Proteome. 2016;135:38–50.
Article
CAS
Google Scholar
Vicens A, Borziak K, Karr TL, Roldan ERS, Dorus S. Comparative sperm proteomics in mouse species with divergent mating systems. Mol Biol Evol. 2017;34:1403–16.
Article
PubMed
PubMed Central
Google Scholar
Dorus S, Wilkin EC, Karr TL. Expansion and functional diversification of a leucyl aminopeptidase family that encodes the major protein constituents of Drosophila sperm. BMC Genomics. 2011;12:177.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li MG, Serr M, Newman EA, Hays TS. The Drosophila tctex-1 light chain is dispensable for essential cytoplasmic dynein functions but is required during spermatid differentiation. Mol Biol Cell. 2004;15:3005–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hecht NB. Molecular mechanisms of male germ cell differentiation. BioEssays. 1998;20:555–61.
Article
CAS
PubMed
Google Scholar
McDonough CE, Whittington E, Pitnick S, Dorus S. Proteomics of reproductive systems: towards a molecular understanding of postmating, prezygotic reproductive barriers. J Proteome. 2016;135:26–37.
Article
CAS
Google Scholar
Baker MA, Hetherington L, Weinberg A, Naumovski N, Velkov T, Pelzing M, et al. Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of Izumo1. J Proteome Res. 2012;11:5252–64.
Article
CAS
PubMed
Google Scholar
Platt MD, Salicioni AM, Hunt DF, Visconti PE. Use of differential isotopic labeling and mass spectrometry to analyze capacitation-associated changes in the phosphorylation status of mouse sperm proteins. J Proteome Res. 2009;8:1431–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalebic N, Sorrentino S, Perlas E, Bolasco G, Martinez C, Heppenstall PA. αTAT1 is the major α-tubulin acetyltransferase in mice. Nat Commun. 2013;4:1962.
Article
PubMed
Google Scholar
Singh ND, Koerich LB, Carvalho AB, Clark AG. Positive and purifying selection on the Drosophila Y chromosome. Mol Biol Evol. 2014;31:2612–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riley NM, Coon JJ. Phosphoproteomics in the age of rapid and deep proteome profiling. Anal Chem. 2016;88:74–94.
Article
CAS
PubMed
Google Scholar
Walters JR, Harrison RG. Combined EST and proteomic analysis identifies rapidly evolving seminal fluid proteins in Heliconius butterflies. Mol Biol Evol. 2010;27:2000–13.
Article
CAS
PubMed
Google Scholar
Walters JR, Harrison RG. Decoupling of rapid and adaptive evolution among seminal fluid proteins in Heliconius butterflies with divergent mating systems: seminal fluid proteins in Heliconius butterflies. Evolution. 2011;65:2855–71.
Article
CAS
PubMed
Google Scholar
Swanson WJ, Vacquier VD. The rapid evolution of reproductive proteins. Nat Rev Genet. 2002;3:137–44.
Article
CAS
PubMed
Google Scholar
Hahn MW, Han MV, Han S-G. Gene family evolution across 12 Drosophila genomes. PLoS Genet. 2007;3:e197.
Article
PubMed
PubMed Central
Google Scholar
Zhao L, Saelao P, Jones CD, Begun DJ. Origin and spread of de novo genes in Drosophila melanogaster populations. Science. 2014;343:769–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haerty W, Jagadeeshan S, Kulathinal RJ, Wong A, Ravi Ram K, Sirot LK, et al. Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics. 2007;177:1321–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vicens A, Lüke L, Roldan ERS. Proteins involved in motility and sperm-egg interaction evolve more rapidly in mouse spermatozoa. PLoS One. 2014;9:e91302.
Article
PubMed
PubMed Central
Google Scholar
Dorus S, Wasbrough ER, Busby J, Wilkin EC, Karr TL. Sperm proteomics reveals intensified selection on mouse sperm membrane and acrosome genes. Mol Biol Evol. 2010;27:1235–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dean MD, Good JM, Nachman MW. Adaptive evolution of proteins secreted during sperm maturation: an analysis of the mouse epididymal transcriptome. Mol Biol Evol. 2008;25:383–92.
Article
CAS
PubMed
Google Scholar
Vicens A, Gomez Montoto L, Couso-Ferrer F, Sutton KA, Roldan ERS. Sexual selection and the adaptive evolution of PKDREJ protein in primates and rodents. Mol Hum Reprod. 2015;21:146–56.
Article
CAS
PubMed
Google Scholar