Vilà C, Savolainen P E. Maldonado J R. Amorim I E. Rice J L. Honeycutt R, et al. Multiple and Ancient Origins of the Domestic Dog. 1997. Science. doi:10.1126/science.276.5319.1687.
Lindblad-Toh K. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438(7069):803–19.
Article
CAS
PubMed
Google Scholar
Germonpré M, Sablin MV, Stevens RE, Hedges REM, Hofreiter M, Stiller M, et al. Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. J Archaeol Sci. 2009;36:473–90.
Article
Google Scholar
Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han EE, Silva PM, et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 2014;10:e1004016. doi:10.1371/journal.pgen.1004016.
Article
PubMed
PubMed Central
Google Scholar
Boyko AR. The domestic dog: man’s best friend in the genomic era. Genome Biol. 2011;12:216. doi:10.1186/gb-2011-12-2-216.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larson G, Bradley DG. How much is that in dog years? The advent of canine population genomics. PLoS Genet. 2014;10:e1004093. doi:10.1371/journal.pgen.1004093.
Article
PubMed
PubMed Central
Google Scholar
Skoglund P. Estimation of population divergence times from non-overlapping genomic sequences: examples from dogs and wolves. Mol Biol Evol. 2011;28(4):1505–17.
Article
CAS
PubMed
Google Scholar
Thalmann O, Shapiro B, Cui P, Schuenemann VJ, Sawyer SK, Greenfield DL, et al. Complete mitochondrial genomes of ancient Canids suggest a European origin of domestic dogs. Science (80- ). 2013;2013:342. http://science.sciencemag.org/content/342/6160/871.full. Accessed 14 Sep 2016
Google Scholar
Frantz LAF, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M, Perri A, et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science (80- ). 2016;2016:352.
Google Scholar
Wang L, Ma Y-P, Zhou Q-J, Zhang Y-P, Savolaimen P, Wang G-D. The geographical distribution of grey wolves (Canis Lupus) in China: a systematic review. Zool Res. 2016;37:315–26. 10.13918/j.issn.2095-8137.2016.6.315.
CAS
PubMed
PubMed Central
Google Scholar
Vaysse A, Ratnakumar A, Derrien T, Axelsson E, Rosengren Pielberg G, Sigurdsson S, et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet. 2011;7:e1002316. doi:10.1371/journal.pgen.1002316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irion DN, Schaffer AL, Famula TR, Eggleston ML, Hughes SS, Pedersen NC. Analysis of genetic variation in 28 dog breed populations with 100 microsatellite markers. J Hered. 2003;94:81–7. doi:10.1093/JHERED/ESG004.
Article
CAS
PubMed
Google Scholar
Ostrander EA, Wayne RK. The canine genome. Genome Res. 2005;15:1706–16. doi:10.1101/gr.3736605.
Article
CAS
PubMed
Google Scholar
Gundry RL, Allard MW, Moretti TR, Honeycutt RL, Wilson MR, Monson KL, et al. Mitochondrial DNA analysis of the domestic dog: control region variation within and among breeds. J Forensic Sci. 2007;52:562–72. doi:10.1111/j.1556-4029.2007.00425.x.
Article
CAS
PubMed
Google Scholar
Shannon LM, Boyko RH, Castelhano M, Corey E, Hayward JJ, McLean C, et al. Genetic structure in village dogs reveals a central Asian domestication origin. Proc Natl Acad Sci U S A. 2015;112:13639–44. doi:10.1073/pnas.1516215112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Decker B, Davis BW, Rimbault M, Long AH, Karlins E, Jagannathan V, et al. Comparison against 186 canid whole-genome sequences reveals survival strategies of an ancient clonally transmissible canine tumor. Genome Res. 2015;25:1646–55. doi:10.1101/gr.190314.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gray MM, Granka JM, Bustamante CD, Sutter NB, Boyko AR, Zhu L, et al. Linkage disequilibrium and demographic history of wild and domestic Canids. Genetics. 2009;181:1493–505. doi:10.1534/genetics.108.098830.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pang J-F, Kluetsch C, Zou X-J, Zhang A-B, Luo L-Y, Angleby H, et al. mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Mol Biol Evol. 2009;26:2849–64. doi:10.1093/molbev/msp195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 2010;8:e1000451. doi:10.1371/journal.pbio.1000451.
Article
PubMed
PubMed Central
Google Scholar
VonHoldt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG, Quignon P, et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature. 2010;464:898–902. doi:10.1038/nature08837.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz NHC, Zody MC, Anderson N, et al. Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet. 2007;39:1321–8. doi:10.1038/ng.2007.10.
Article
CAS
PubMed
Google Scholar
Auton A, Rui Li Y, Kidd J, Oliveira K, Nadel J, Holloway JK, et al. Genetic recombination is targeted towards gene promoter regions in dogs. PLoS Genet. 2013;9:1–2.
Article
Google Scholar
Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski M, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013;495:360–4. doi:10.1038/nature11837.
Article
CAS
PubMed
Google Scholar
Bannasch D, Young A, Myers J, Truvé K, Dickinson P, Gregg J, et al. Localization of canine Brachycephaly using an across breed mapping approach. PLoS One. 2010;5:e9632. doi:10.1371/journal.pone.0009632.
Article
PubMed
PubMed Central
Google Scholar
Cadieu E, Neff MW, Quignon P, Walsh K, Chase K, Parker HG, et al. Coat variation in the domestic dog is governed by variants in three genes. Science. 2009;326:150–3. doi:10.1126/science.1177808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olsson M, Meadows JRS, Truvé K, Rosengren Pielberg G, Puppo F, Mauceli E, et al. A novel unstable duplication upstream of HAS2 predisposes to a breed-defining skin phenotype and a periodic fever syndrome in Chinese Shar-Pei dogs. PLoS Genet. 2011;7:e1001332. doi:10.1371/journal.pgen.1001332.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quilez J, Short AD, Martínez V, Kennedy LJ, Ollier W, Sanchez A, et al. A selective sweep of >8 Mb on chromosome 26 in the boxer genome. BMC Genomics. 2011;12:339. doi:10.1186/1471-2164-12-339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salmon Hillbertz NHC, Isaksson M, Karlsson EK, Hellmén E, Pielberg GR, Savolainen P, et al. Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid sinus in ridgeback dogs. Nat Genet. 2007;39:1318–20. doi:10.1038/ng.2007.4.
Article
CAS
PubMed
Google Scholar
Schoenebeck JJ, Hutchinson SA, Byers A, Beale HC, Carrington B, Faden DL, et al. Variation of BMP3 contributes to dog breed skull diversity. PLoS Genet. 2012;8:e1002849. doi:10.1371/journal.pgen.1002849.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berglund J, Nevalainen EM, Molin A-M, Perloski M, André C, Zody MCM, et al. Novel origins of copy number variation in the dog genome. Genome Biol. 2012;13:R73. doi:10.1186/gb-2012-13-8-r73.
Article
PubMed
PubMed Central
Google Scholar
Coe BP, Witherspoon K, Rosenfeld JA, van Bon BWM, Vulto-van Silfhout AT, Bosco P, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet. 2014;46:1063–71. doi:10.1038/ng.3092.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, Kamesh L, et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet. 2007;39:721–3. doi:10.1038/ng2046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F, et al. Personalized copy number and segmental duplication maps using next-generation sequencing. Nat Genet. 2009;41:1061–7. doi:10.1038/ng.437.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh S, Qu Z, Das PJ, Fang E, Juras R, Cothran EG, et al. Copy number variation in the horse genome. PLoS Genet. 2014;10:e1004712. doi:10.1371/journal.pgen.1004712.
Article
PubMed
PubMed Central
Google Scholar
Chain FJJ, Feulner PGD, Panchal M, Eizaguirre C, Samonte IE, Kalbe M, et al. Extensive copy-number variation of young genes across stickleback populations. PLoS Genet. 2014;10:e1004830. doi:10.1371/journal.pgen.1004830.
Article
PubMed
PubMed Central
Google Scholar
Yi G, Qu L, Liu J, Yan Y, Xu G, Yang N. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing. BMC Genomics. 2014;15:962. doi:10.1186/1471-2164-15-962.
Article
PubMed
PubMed Central
Google Scholar
Jiang J, Wang J, Wang H, Zhang Y, Kang H, Feng X, et al. Global copy number analyses by next generation sequencing provide insight into pig genome variation. BMC Genomics. 2014;15:593. doi:10.1186/1471-2164-15-593.
Article
PubMed
PubMed Central
Google Scholar
Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A, et al. Diversity of human copy number variation and multicopy genes. Science (80- ). 2010;330:641–6. doi:10.1126/science.1197005.
Article
CAS
Google Scholar
Sudmant PH, Huddleston J, Catacchio CR, Malig M, Hillier LW, Baker C, et al. Evolution and diversity of copy number variation in the great ape lineage. Genome Res. 2013;23:1373–82. doi:10.1101/gr.158543.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J, et al. Global diversity, population stratification, and selection of human copy-number variation. Science (80- ). 2015;349:aab3761. doi:10.1126/science.aab3761.
Article
Google Scholar
Chen W-K, Swartz JD, Rush LJ, Alvarez CE. Mapping DNA structural variation in dogs. Genome Res. 2008;19:500–9. doi:10.1101/gr.083741.108.
Article
PubMed
Google Scholar
Nicholas TJ, Cheng Z, Ventura M, Mealey K, Eichler EE, Akey JM. The genomic architecture of segmental duplications and associated copy number variants in dogs. Genome Res. 2009;19:491–9. doi:10.1101/gr.084715.108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramirez O, Olalde I, Berglund J, Lorente-Galdos B, Hernandez-Rodriguez J, Quilez J, et al. Analysis of structural diversity in wolf-like canids reveals post-domestication variants. BMC Genomics. 2014;15:465. doi:10.1186/1471-2164-15-465.
Article
PubMed
PubMed Central
Google Scholar
Poorman K, Borst L, Moroff S, Roy S, Labelle P, Motsinger-Reif A, et al. Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization. Chromosom Res. 2015;23:171–86. doi:10.1007/s10577-014-9444-6.
Article
CAS
Google Scholar
Rossi E, Radi O, De Lorenzi L, Vetro A, Groppetti D, Bigliardi E, et al. Sox9 duplications are a relevant cause of Sry-negative XX sex reversal dogs. PLoS One. 2014;9:e101244. doi:10.1371/journal.pone.0101244.
Article
PubMed
PubMed Central
Google Scholar
Molin A-M, Berglund J, Webster MT, Lindblad-Toh K. Genome-wide copy number variant discovery in dogs using the CanineHD genotyping array. BMC Genomics. 2014;15:210. doi:10.1186/1471-2164-15-210.
Article
PubMed
PubMed Central
Google Scholar
Coe BP, Ylstra B, Carvalho B, Meijer GA, MacAulay C, Lam WL. Resolving the resolution of array CGH. Genomics. 2007;89:647–53.
Article
CAS
PubMed
Google Scholar
Sharp AJ, Itsara A, Cheng Z, Alkan C, Schwartz S, Eichler EE. Optimal design of oligonucleotide microarrays for measurement of DNA copy-number. Hum Mol Genet. 2007;16:2770–9. doi:10.1093/hmg/ddm234.
Article
CAS
PubMed
Google Scholar
Cooper GM, Zerr T, Kidd JM, Eichler EE, Nickerson DA. Systematic assessment of copy number variant detection via genome-wide SNP genotyping. Nat Genet. 2008;40:1199–203. doi:10.1038/ng.236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winchester L, Yau C, Ragoussis J. Comparing CNV detection methods for SNP arrays. Brief Funct Genomic Proteomic. 2009;8:353–66. doi:10.1093/bfgp/elp017.
Article
CAS
PubMed
Google Scholar
Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444:444–54. doi:10.1038/nature05329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lou H, Li S, Yang Y, Kang L, Zhang X, Jin W, et al. A map of copy number variations in Chinese populations. PLoS One. 2011;6:e27341. doi:10.1371/journal.pone.0027341.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinformatics. 2013;14(Suppl 11):S1. doi:10.1186/1471-2105-14-S11-S1.
Article
Google Scholar
Girirajan S, Campbell CD, Eichler EE. Human copy number variation and complex genetic disease. Annu Rev Genet. 2011;45:203–26. doi:10.1146/annurev-genet-102209-163544.
Article
CAS
PubMed
Google Scholar
Yang Y, Chung EK, YL W, Savelli SL, Nagaraja HN, Zhou B, et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European America. Am J Hum Genet. 2007;80:1037–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G, Zhai W, Yang H, Fan R, Cao X, Zhong L, et al. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat Commun. 2013;4:1860. doi:10.1038/ncomms2814.
Article
PubMed
Google Scholar
Fan Z, Silva P, Gronau I, Wang S, Armero AS, Schweizer RM, et al. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res. 2016;26:163–73. doi:10.1101/gr.197517.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, et al. Mapping and sequencing of structural variation from eight human genomes. Nature. 2008;453:56–64. doi:10.1038/nature06862.
Article
CAS
PubMed
PubMed Central
Google Scholar
Armengol L, Villatoro S, González JR, Pantano L, García-Aragonés M, Rabionet R, et al. Identification of copy number variants defining genomic differences among major human groups. PLoS One. 2009;4:e7230. doi:10.1371/journal.pone.0007230.
Article
PubMed
PubMed Central
Google Scholar
Marques-Bonet T, Kidd JM, Ventura M, Graves TA, Cheng Z, Hillier LW, et al. A burst of segmental duplications in the genome of the African great ape ancestor. Nature. 2009;457:877–81. doi:10.1038/nature07744.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barclay AN, Brown MH. The SIRP family of receptors and immune regulation. Nat Rev Immunol. 2006;6:457–64. doi:10.1038/nri1859.
Article
CAS
PubMed
Google Scholar
Pirooznia M, Goes FS, Zandi PP. Whole-genome CNV analysis: advances in computational approaches. Front Genet. 2015;6:138. doi:10.3389/fgene.2015.00138.
Article
PubMed
PubMed Central
Google Scholar
Larson G, Karlsson EK, Perri A, Webster MT, Ho SYW, Peters J, et al. Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proc Natl Acad Sci U S A. 2012;109:8878–83. doi:10.1073/pnas.1203005109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cruz F, Vila C, Webster MT. The legacy of domestication: accumulation of deleterious mutations in the dog genome. Mol Biol Evol. 2008;25:2331–6. doi:10.1093/molbev/msn177.
Article
CAS
PubMed
Google Scholar
Marsden CD, Ortega-Del Vecchyo D, O’Brien DP, Taylor JF, Ramirez O, Vilà C, et al. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc Natl Acad Sci U S A. 2016;113:152–7. doi:10.1073/pnas.1512501113.
Article
CAS
PubMed
Google Scholar
Carvalho CMB, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet. 2016;17:224–38. doi:10.1038/nrg.2015.25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller DE, Hawley RS. Tetrad analysis in the mouse. Nat Genet. 2014;46:1045–6. doi:10.1038/ng.3104.
Article
CAS
PubMed
Google Scholar
Freedman AH, Schweizer RM, Ortega-Del Vecchyo D, Han E, Davis BW, Gronau I, et al. Demographically-based evaluation of genomic regions under selection in domestic dogs. PLoS Genet. 2016;12:e1005851. doi:10.1371/journal.pgen.1005851.
Article
PubMed
PubMed Central
Google Scholar
Allendorf FW. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol. 1986;5:181–90. doi:10.1002/zoo.1430050212.
Article
Google Scholar
Maruyama T, Fuerstt PA. POPULATION BOTTLENECKS AND NONEQUILIBRIUM MODELS IN POPULATION GENETICS. 11. NUMBER O F ALLELES IN a SMALL POPULATION T H a T WAS FORMED BY a RECENT BOTTLENECK HE fate of genes in a population that experiences a sudden reduction in. Genetics. 1985;111:675–89. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1202664/pdf/675.pdf. Accessed 24 Mar 2017.
CAS
PubMed
PubMed Central
Google Scholar
Hodgkinson A, Eyre-Walker A. Human triallelic sites: evidence for a new mutational mechanism? Genetics. 2010;184:233–41. doi:10.1534/genetics.109.110510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Handsaker RE, Van Doren V, Berman JR, Genovese G, Kashin S, Boettger LM, et al. Large multiallelic copy number variations in humans. Nat Genet. 2015;47:296–303. doi:10.1038/ng.3200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duvaux L, Geissmann Q, Gharbi K, Zhou J-J, Ferrari J, Smadja CM, et al. Dynamics of copy number variation in host races of the pea aphid. Mol Biol Evol. 2015;32:63–80.
Article
CAS
PubMed
Google Scholar
Skjeldal OH, Stokke O, Refsum S, Norseth J, Petit H. Clinical and biochemical heterogeneity in conditions with phytanic acid accumulation. J Neurol Sci. 1987;77:87–96. http://www.ncbi.nlm.nih.gov/pubmed/2433405. Accessed 4 Oct 2017.
Article
CAS
PubMed
Google Scholar
Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474:337–42. doi:10.1038/nature10163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olsson M, Frankowiack M, Tengvall K, Roosje P, Fall T, Ivansson E, et al. The dog as a genetic model for immunoglobulin a (IgA) deficiency: identification of several breeds with low serum IgA concentrations. Vet Immunol Immunopathol. 2014;160:255–9. doi:10.1016/j.vetimm.2014.05.010.
Article
CAS
PubMed
Google Scholar
Karyadi DM, Karlins E, Decker B, vonHoldt BM, Carpintero-Ramirez G, Parker HG, et al. A copy number variant at the KITLG locus likely confers risk for canine Squamous cell carcinoma of the digit. PLoS Genet. 2013;9:e1003409. doi:10.1371/journal.pgen.1003409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lao O, de Gruijter JM, van Duijn K, Navarro A, Kayser M. Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Ann Hum Genet. 2007;71:354–69. doi:10.1111/j.1469-1809.2006.00341.x.
Article
CAS
PubMed
Google Scholar
Metzger J, Karwath M, Tonda R, Beltran S, Águeda L, Gut M, et al. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics. 2015;16:764. doi:10.1186/s12864-015-1977-3.
Article
PubMed
PubMed Central
Google Scholar
Gutierrez-Gil B, Arranz JJ, Wiener P. An interpretive review of selective sweep studies in Bos Taurus cattle populations: identification of unique and shared selection signals across breeds. Front Genet. 2015;6:167. doi:10.3389/fgene.2015.00167.
PubMed
PubMed Central
Google Scholar
Miller CT, Beleza S, Pollen AA, Schluter D, Kittles RA, Shriver MD, et al. Cis-regulatory changes in kit Ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell. 2007;131:1179–89. doi:10.1016/j.cell.2007.10.055.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mengel-From J, Wong TH, Morling N, Rees JL, Jackson IJ. Genetic determinants of hair and eye colours in the Scottish and Danish populations. BMC Genet. 2009;10:88. doi:10.1186/1471-2156-10-88.
Article
PubMed
PubMed Central
Google Scholar
Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA, Wang T, et al. Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC genome browser. Bioinformatics. 2014;30:1003–5. doi:10.1093/bioinformatics/btt637.
Article
CAS
PubMed
Google Scholar
Smit A. The origin of interspersed repeats in the human genome Arian FA Smit. Curr Opin Genet Dev. 1996;6:743–8.
Article
CAS
PubMed
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80. http://www.ncbi.nlm.nih.gov/pubmed/9862982. Accessed 24 Feb 2017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hach F, Hormozdiari F, Alkan C, Hormozdiari F, Birol I, Eichler EE, et al. mrsFAST: a cache-oblivious algorithm for short-read mapping. Nat Methods. 2010;7:576–7. doi:10.1038/nmeth0810-576.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicholas TJ, Baker C, Eichler EE, Akey JM. A high-resolution integrated map of copy number polymorphisms within and between breeds of the modern domesticated dog. BMC Genomics. 2011;12:414. doi:10.1186/1471-2164-12-414.
Article
PubMed
PubMed Central
Google Scholar
Schreiber J. Pomegranate. 2014. https://github.com/jmschrei/pomegranate.
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–60. doi:10.1093/bioinformatics/btp324.
Article
CAS
PubMed
PubMed Central
Google Scholar
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8. doi:10.1038/ng.806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinforma. 2013;43:11.10.1–33. doi:10.1002/0471250953.bi1110s43.
Google Scholar
Alexa A. Rahnenfuhrer J. TopGO. 2016; https://bioconductor.org/packages/release/bioc/html/topGO.html.
Alexa A, Joorg Rahnenfuhrer. TopGO Manual, page 19, section 6.2. 2017. https://bioconductor.org/packages/release/bioc/vignettes/topGO/inst/doc/topGO.pdf.
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800. doi:10.1371/journal.pone.0021800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution (N Y). 1984;38:1358. doi:10.2307/2408641.
CAS
Google Scholar