Bremus C, Herrmann U, Bringer-Meyer S, Sahm H. The use of microorganisms in L-ascorbic acid production. J Biotechnol. 2006;124(1):196–205.
Article
CAS
PubMed
Google Scholar
Gupta A, Singh VK, Qazi GN, Kumar A. Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol. 2001;3(3):445–56.
CAS
PubMed
Google Scholar
Pappenberger G, Hohmann H-P. Industrial production of L-ascorbic acid (vitamin C) and D-Isoascorbic acid. In: Zorn H, Czermak P, editors. Biotechnology of food and feed additives. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 143–88.
Google Scholar
Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, et al. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microb. 1997;63(2):454–60.
CAS
Google Scholar
Wang EX, Ding MZ, Ma Q, Dong XT, Yuan YJ. Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation. Microb Cell Factories. 2016;15:21.
Article
Google Scholar
Ameyama M, Shinagawa E, Matsushita K, Adachi O. D-fructose dehydrogenase of Gluconobacter industrius: purification, characterization, and application to enzymatic microdetermination of D-fructose. J Bacteriol. 1981;145(2):814–23.
CAS
PubMed
PubMed Central
Google Scholar
Herrmann U, Merfort M, Jeude M, Bringer-Meyer S, Sahm H. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343. Appl Microbiol Biotechnol. 2004;64(1):86–90.
Article
CAS
PubMed
Google Scholar
Zhou X, Lü S, Xu Y, Mo Y, Yu S. Improving the performance of cell biocatalysis and the productivity of xylonic acid using a compressed oxygen supply. Biochem Eng J. 2015;93(Supplement C):196–9.
Article
CAS
Google Scholar
Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol. 2005;23(2):195–200.
Article
CAS
PubMed
Google Scholar
Kranz A, Vogel A, Degner U, Kiefler I, Bott M, Usadel B, Polen T. High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads. J Biotechnol 2017.
Deppenmeier U, Hoffmeister M, Prust C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol. 2002;60(3):233–42.
Article
CAS
PubMed
Google Scholar
Matsushita K, Toyama H, Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol. 1994;36:247–301.
Article
CAS
PubMed
Google Scholar
Hanke T, Noh K, Noack S, Polen T, Bringer S, Sahm H, Wiechert W, Bott M. Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H. Appl Environ Microb. 2013;79(7):2336–48.
Article
CAS
Google Scholar
Hanke T, Richhardt J, Polen T, Sahm H, Bringer S, Bott M. Influence of oxygen limitation, absence of the cytochrome bc(1) complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology. J Biotechnol. 2012;157(3):359–72.
Article
CAS
PubMed
Google Scholar
Richhardt J, Bringer S, Bott M. Mutational analysis of the pentose phosphate and Entner-Doudoroff pathways in Gluconobacter oxydans reveals improved growth of a Δedd Δeda mutant on mannitol. Appl Environ Microbiol. 2012;78(19):6975–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richhardt J, Bringer S, Bott M. Role of the pentose phosphate pathway and the Entner-Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H. Appl Microbiol Biotechnol. 2013;97(10):4315–23.
Article
CAS
PubMed
Google Scholar
Richhardt J, Luchterhand B, Bringer S, Buchs J, Bott M. Evidence for a key role of cytochrome bo3 oxidase in respiratory energy metabolism of Gluconobacter oxydans. J Bacteriol. 2013;195(18):4210–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bringer S, Bott M. Central carbon metabolism and respiration in Gluconobacter oxydans. Berlin, Heidelberg, New York: Springer-Verlag; 2016.
Book
Google Scholar
Kostner D, Luchterhand B, Junker A, Volland S, Daniel R, Büchs J, Liebl W, Ehrenreich A. The consequence of an additional NADH dehydrogenase paralog on the growth of Gluconobacter oxydans DSM3504. Appl Microbiol Biotechnol. 2015;99(1):375–86.
Article
CAS
PubMed
Google Scholar
Kiefler I, Bringer S, Bott M. SdhE-dependent formation of a functional Acetobacter pasteurianus succinate dehydrogenase in Gluconobacter oxydans - a first step toward a complete tricarboxylic acid cycle. Appl Microbiol Biotechnol. 2015;99(21):9147–60.
Article
CAS
PubMed
Google Scholar
Kiefler I, Bringer S, Bott M. Metabolic engineering of Gluconobacter oxydans 621H for increased biomass yield. Appl Microbiol Biotechnol. 2017;101(13):5453–67.
Article
CAS
PubMed
Google Scholar
Hu Y, Wan H, Li J, Zhou J. Enhanced production of L-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis. J Ind Microbiol Biotechnol. 2015;42(7):1039–47.
Article
CAS
PubMed
Google Scholar
Kallnik V, Meyer M, Deppenmeier U, Schweiger P. Construction of expression vectors for protein production in Gluconobacter oxydans. J Biotechnol. 2010;150(4):460–5.
Article
CAS
PubMed
Google Scholar
Merfort M, Herrmann U, Bringer-Meyer S, Sahm H. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Appl Microbiol Biotechnol. 2006;73(2):443–51.
Article
CAS
PubMed
Google Scholar
Mientus M, Kostner D, Peters B, Liebl W, Ehrenreich A. Characterization of membrane-bound dehydrogenases of Gluconobacter oxydans 621H using a new system for their functional expression. Appl Microbiol Biotechnol. 2017;101(8):3189–200.
Article
CAS
PubMed
Google Scholar
Shi L, Li K, Zhang H, Liu X, Lin J, Wei D. Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans. J Biotechnol. 2014;175:69–74.
Article
CAS
PubMed
Google Scholar
Petzold CJ, Chan LJ, Nhan M, Adams PD. Analytics for metabolic engineering. Front Bioeng Biotechnol. 2015;3:135.
Article
PubMed
PubMed Central
Google Scholar
Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics. 2013;14:888.
Article
PubMed
PubMed Central
Google Scholar
Thomason MK, Storz G. Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet. 2010;44:167–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weirick T, Militello G, Muller R, John D, Dimmeler S, Uchida S. The identification and characterization of novel transcripts from RNA-seq data. Brief Bioinform. 2016;17(4):678–85.
Article
PubMed
Google Scholar
Osbourn AE, Field B. Operons. Cell Mol Life Sci. 2009;66(23):3755–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price MN, Arkin AP, Alm EJ. The life-cycle of operons. PLoS Genet. 2006;2(6):e96.
Article
PubMed
PubMed Central
Google Scholar
Rogozin IB, Makarova KS, Murvai J, Czabarka E, Wolf YI, Tatusov RL, Szekely LA, Koonin EV. Connected gene neighborhoods in prokaryotic genomes. Nucleic Acids Res. 2002;30(10):2212–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature. 2010;464(7286):250–5.
Article
CAS
PubMed
Google Scholar
Albersmeier A, Pfeifer-Sancar K, Rückert C, Kalinowski J. Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. J Biotechnol. 2017.
Cohen O, Doron S, Wurtzel O, Dar D, Edelheit S, Karunker I, Mick E, Sorek R. Comparative transcriptomics across the prokaryotic tree of life. Nucleic Acids Res. 2016;44(W1):W46–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Filiatrault MJ. Progress in prokaryotic transcriptomics. Curr Opin Microbiol. 2011;14(5):579–86.
Article
CAS
PubMed
Google Scholar
Sorek R, Cossart P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet. 2010;11(1):9–16.
Article
CAS
PubMed
Google Scholar
Ewing B, Green P. Base-calling of automated sequencer traces using phred. II Error probabilities. Genome Res. 1998;8(3):186–94.
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A. ReadXplorer - visualization and analysis of mapped sequences. Bioinformatics. 2014;30(16):2247–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Ao W, Gaudet J, Kent WJ, Muttumu S, Mango SE. Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR. Science. 2004;305(5691):1743–6.
Article
CAS
PubMed
Google Scholar
Čuklina J, Hahn J, Imakaev M, Omasits U, Förstner KU, Ljubimov N, Goebel M, Pessi G, Fischer HM, Ahrens CH, et al. Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation. BMC Genomics. 2016;17:302.
Article
PubMed
PubMed Central
Google Scholar
Malakooti J, Wang SP, Ely B. A consensus promoter sequence for Caulobacter crescentus genes involved in biosynthetic and housekeeping functions. J Bacteriol. 1995;177(15):4372–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramírez-Romero MA, Masulis I, Cevallos MA, González V, Dávila G. The Rhizobium etli σ70 (SigA) factor recognizes a lax consensus promoter. Nucleic Acids Res. 2006;34(5):1470–80.
Article
PubMed
PubMed Central
Google Scholar
Schlüter JP, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A. Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021. BMC Genomics. 2013;14:156.
Article
PubMed
PubMed Central
Google Scholar
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015;43(Database issue):D130–7.
Article
CAS
PubMed
Google Scholar
Tatusova T, Ciufo S, Federhen S, Fedorov B, McVeigh R, O'Neill K, Tolstoy I, Zaslavsky L. Update on RefSeq microbial genomes resources. Nucleic Acids Res. 2015;43(Database issue):D599–605.
Article
CAS
PubMed
Google Scholar
Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH. JBrowse: a next-generation genome browser. Genome Res. 2009;19(9):1630–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo J, Cheng G, Gou XY, Xing F, Li S, Han YC, Wang L, Song JM, Shu CC, Chen SW, et al. Comprehensive transcriptome and improved genome annotation of Bacillus licheniformis WX-02. FEBS Lett. 2015;589(18):2372–81.
Article
CAS
PubMed
Google Scholar
Irla M, Neshat A, Brautaset T, Rückert C, Kalinowski J, Wendisch VF. Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics. 2015;16:73.
Article
PubMed
PubMed Central
Google Scholar
Campanaro S, Williams TJ, Burg DW, De Francisci D, Treu L, Lauro FM, Cavicchioli R. Temperature-dependent global gene expression in the Antarctic archaeon Methanococcoides burtonii. Environ Microbiol. 2011;13(8):2018–38.
Article
CAS
PubMed
Google Scholar
Taha, Siddiqui KS, Campanaro S, Najnin T, Deshpande N, Williams TJ, Aldrich-Wright J, Wilkins M, Curmi PM, Cavicchioli R. Single TRAM domain RNA-binding proteins in Archaea: functional insight from Ctr3 from the Antarctic methanogen Methanococcoides burtonii. Environ Microbiol. 2016;18(9):2810–24.
Article
CAS
PubMed
Google Scholar
Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature. 2009;459(7249):950–6.
Article
CAS
PubMed
Google Scholar
Vijayan V, Jain IH, O'Shea EK. A high resolution map of a cyanobacterial transcriptome. Genome Biol. 2011;12(5):R47.
Article
PubMed
PubMed Central
Google Scholar
Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R. A single-base resolution map of an archaeal transcriptome. Genome Res. 2010;20(1):133–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Güell M, van Noort V, Yus E, Chen WH, Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M, Doerks T, Kuhner S, et al. Transcriptome complexity in a genome-reduced bacterium. Science. 2009;326(5957):1268–71.
Article
PubMed
Google Scholar
Koide T, Reiss DJ, Bare JC, Pang WL, Facciotti MT, Schmid AK, Pan M, Marzolf B, Van PT, Lo FY, et al. Prevalence of transcription promoters within archaeal operons and coding sequences. Mol Syst Biol. 2009;5:285.
Article
PubMed
PubMed Central
Google Scholar
de Groot A, Roche D, Fernandez B, Ludanyi M, Cruveiller S, Pignol D, Vallenet D, Armengaud J, Blanchard L. RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti. Genome Biol Evol. 2014;6(4):932–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brock JE, Pourshahian S, Giliberti J, Limbach PA, Janssen GR. Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5′-terminal AUG. RNA. 2008;14(10):2159–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Donnell SM, Janssen GR. The initiation codon affects ribosome binding and translational efficiency in Escherichia coli of cI mRNA with or without the 5′ untranslated leader. J Bacteriol. 2001;183(4):1277–83.
Article
PubMed
PubMed Central
Google Scholar
Shell SS, Wang J, Lapierre P, Mir M, Chase MR, Pyle MM, Gawande R, Ahmad R, Sarracino DA, Ioerger TR, et al. Leaderless transcripts and small proteins are common features of the Mycobacterial translational landscape. PLoS Genet. 2015;11(11):e1005641.
Article
PubMed
PubMed Central
Google Scholar
Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res. 2002;30(14):3141–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hollands K, Proshkin S, Sklyarova S, Epshtein V, Mironov A, Nudler E, Groisman EA. Riboswitch control of rho-dependent transcription termination. Proc Natl Acad Sci U S A. 2012;109(14):5376–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raghavan R, Groisman EA, Ochman H. Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res. 2011;21(9):1487–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tezuka T, Ohnishi Y. Two glycine riboswitches activate the glycine cleavage system essential for glycine detoxification in Streptomyces griseus. J Bacteriol. 2014;196(7):1369–76.
Article
PubMed
PubMed Central
Google Scholar
Corbino KA, Barrick JE, Lim J, Welz R, Tucker BJ, Puskarz I, Mandal M, Rudnick ND, Breaker RR. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol. 2005;6(8):R70.
Article
PubMed
PubMed Central
Google Scholar
Millman A, Dar D, Shamir M, Sorek R. Computational prediction of regulatory, premature transcription termination in bacteria. Nucleic Acids Res. 2017;45(2):886–93.
Article
PubMed
Google Scholar
Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J Biol Chem. 2002;277(50):48949–59.
Article
CAS
PubMed
Google Scholar
Sudarsan N, Barrick JE, Breaker RR. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA. 2003;9(6):644–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villegas A, Kropinski AM. An analysis of initiation codon utilization in the domain Bacteria - concerns about the quality of bacterial genome annotation. Microbiology. 2008;154(Pt 9):2559–661.
Article
CAS
PubMed
Google Scholar
Stenström CM, Holmgren E, Isaksson LA. Cooperative effects by the initiation codon and its flanking regions on translation initiation. Gene. 2001;273(2):259–65.
Article
PubMed
Google Scholar
Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev. 1996;60(3):512–38.
CAS
PubMed
PubMed Central
Google Scholar
Shine J, Dalgarno L. Terminal-sequence analysis of bacterial ribosomal RNA. Correlation between the 3′-terminal-polypyrimidine sequence of 16-S RNA and translational specificity of the ribosome. Eur J Biochem. 1975;57(1):221–30.
Article
CAS
PubMed
Google Scholar
Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. Regulation of noise in the expression of a single gene. Nat Genet. 2002;31(1):69–73.
Article
CAS
PubMed
Google Scholar
Vellanoweth RL, Rabinowitz JC. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol. 1992;6(9):1105–14.
Article
CAS
PubMed
Google Scholar
Camacho A, Salas M. Effect of mutations in the "extended −10" motif of three Bacillus subtilis sigmaA-RNA polymerase-dependent promoters. J Mol Biol. 1999;286(3):683–93.
Article
CAS
PubMed
Google Scholar
Hawley DK, McClure WR. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983;11(8):2237–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Browning DF, Busby SJ. The regulation of bacterial transcription initiation. Nat Rev Microbiol. 2004;2(1):57–65.
Article
CAS
PubMed
Google Scholar
Paget MS, Helmann JD. The sigma70 family of sigma factors. Genome Biol. 2003;4(1):203.
Article
PubMed
PubMed Central
Google Scholar
Staron A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol Microbiol. 2009;74(3):557–81.
Article
CAS
PubMed
Google Scholar
Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voss B, Steglich C, Wilde A, Vogel J, et al. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A. 2011;108(5):2124–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitschke J, Vioque A, Haas F, Hess WR, Muro-Pastor AM. Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. Proc Natl Acad Sci U S A. 2011;108(50):20130–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Denoeud F, Kapranov P, Ucla C, Frankish A, Castelo R, Drenkow J, Lagarde J, Alioto T, Manzano C, Chrast J, et al. Prominent use of distal 5′ transcription start sites and discovery of a large number of additional exons in ENCODE regions. Genome Res. 2007;17(6):746–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sesto N, Wurtzel O, Archambaud C, Sorek R, Cossart P. The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. Nat Rev Microbiol. 2013;11(2):75–82.
Article
CAS
PubMed
Google Scholar
Kröger C, Dillon SC, Cameron AD, Papenfort K, Sivasankaran SK, Hokamp K, Chao Y, Sittka A, Hébrard M, Händler K, et al. The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci U S A. 2012;109(20):E1277–86.
Article
PubMed
PubMed Central
Google Scholar
Mendoza-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L, Taboada B, Jimenez-Jacinto V, Salgado H, Juarez K, Contreras-Moreira B, et al. Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PLoS One. 2009;4(10):e7526.
Article
PubMed
PubMed Central
Google Scholar
Buckstein MH, He J, Rubin H. Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J Bacteriol. 2008;190(2):718–26.
Article
CAS
PubMed
Google Scholar
Alhadid Y, Chung S, Lerner E, Taatjes DJ, Borukhov S, Weiss S. Studying transcription initiation by RNA polymerase with diffusion-based single-molecule fluorescence. Protein Sci. 2017;26(7):1278–90.
Article
CAS
PubMed
Google Scholar
Oliveros JC, VENNY. An interactive tool for comparing lists with Venn diagrams. BioinfoGP, CNB-CSIC. www.citeulike.org/user/hroest/article/6994833.