Sreenivasulu N, Schnurbusch TA. Genetic playground for enhancing grain number in cereals. Trends Plant Sci. 2011;17:91–101.
Article
PubMed
Google Scholar
Zhang RQ, Hou F, Chen J, Chen SL, Xing LP, Feng YG, et al. Agronomic characterization and genetic analysis of the supernumerary spikelet in tetraploid wheat (Triticum turgidum L.). J Integr Agr. 2016;15:60345–7.
Google Scholar
Klindworth DL, Williams ND, Joppa LR. Inheritance of supernumerary spikelets in a tetraploid wheat cross. Genome. 1990;33:509–14.
Article
CAS
Google Scholar
Zhang RQ, Wang XE, Chen PD. Inheritance and mapping of gene controlling four-rowed spike in tetraploid wheat (Triticum turgidum L.). Acta Agron Sin. 2013;39:29–33.
Article
CAS
Google Scholar
Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science. 2002;298:1238–41.
Article
CAS
PubMed
Google Scholar
Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development. 2003;130:3841–50.
Article
CAS
PubMed
Google Scholar
Poursarebani N, Seidensticker T, Koppolu R, Trautewig C, Gawroński P, Bini F, et al. The genetic basis of composite spike form in barley and ‘miracle-wheat’. Genetics. 2015;201:155–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobrovolskaya O, Pont C, Sibout R, Martinek P, Badaeva E, Murat F, et al. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol. 2015;167:189–99.
Article
CAS
PubMed
Google Scholar
Park JM, Park CJ, Lee SB, Ham BK, Shin R, Peak KH. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell. 2001;13:1035–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Li J, Wang H, Fu Z, Liu J, Yu Y. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. J Exp Bot. 2011;62:825–40.
Article
CAS
PubMed
Google Scholar
Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed. 2009;11:49–79.
Article
CAS
Google Scholar
Gan CS, Chong PK, Pham TK, Wright PC. Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J Proteome Res. 2007;6:821–7.
Article
CAS
PubMed
Google Scholar
Pierce A, Unwin RD, Evans CA, Griffiths S, Carney L, Zhang L. Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol Cell Proteomics. 2008;7:853–63.
Article
CAS
PubMed
Google Scholar
Fu Y, Zhang H, Mandal SN, Wang CY, Chen CH, Ji WQ. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew. J Proteome. 2016;130:108–19.
Article
CAS
Google Scholar
Yang YH, Yu Y, Bi CW, Kang ZS. Quantitative proteomics reveals the defense response of wheat against Puccinia striiformis f. sp. tritici. Sci Rep. 2016;6:34261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarez S, Choudhury SR, Pandey S. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J Proteome Res. 2014;13:1688–701.
Article
CAS
PubMed
Google Scholar
Ma CY, J Zhou JW, Chen GX, Bian YW, Lv DG, Li XH, et al. iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics. 2014;15:1029.
Article
PubMed
PubMed Central
Google Scholar
Isaacson T, Damasceno CM, Saravanan RS, He Y, Catalá C, Saladié M, et al. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc. 2006;1:769–74.
Article
CAS
PubMed
Google Scholar
Bradford MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
Article
CAS
PubMed
Google Scholar
Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 2004;25:1327–33.
Article
CAS
PubMed
Google Scholar
Shilov IV, Seymour SL, Patel AA, Loboda A, Tang W, Keating SP, et al. The paragon algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics. 2007;6:1638–55.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (T) (-DeltaDeltaC) method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Haque MA, Martinek P, Kobayashi S, Kita I, Ohwaku K, Watanabe N, et al. Microsatellite mapping of the genes for semi-dwarfism and branched spike in Triticum durum Desf. Var. ramosoobscurum Jakubz. “Vetvistokoloskaya”. Genet Resour Crop Ev. 2012;59:831–7.
Article
CAS
Google Scholar
Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696:291.
Article
CAS
PubMed
Google Scholar
Jofuku KD, Boer BG, Van MM, Okamuro JK. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell. 1994;6:1211–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996;8:155–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nolewilson S, Krizek BA. DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res. 2000;28:4076–82.
Article
CAS
Google Scholar
Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell. 2003;15:2730–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, et al. Dissection of floral induction pathways using global expression analysis. Development. 2003;130:6001–12.
Article
CAS
PubMed
Google Scholar
Zhu QH, Helliwell CA. Regulation of flowering time and floral patterning by miR172. J Exp Bot. 2011;62:487–95.
Article
CAS
PubMed
Google Scholar
Chuck G, Meeley RB, Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 1998;12:1145–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development. 2008;135:3013–9.
Article
CAS
PubMed
Google Scholar
Lee DY, Lee J, Moon S, Park SY, An G. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J. 2007;49:64–78.
Article
CAS
PubMed
Google Scholar
Shitsukawa N, Takagishi A, Ikari C, Takumi S, Murai K. WFL, a wheat FLORICAULA/LEAFY ortholog, is associated with spikelet formation as lateral branch of the inflorescence meristem. Genes Genet Syst. 2006;81:13–20.
Article
CAS
PubMed
Google Scholar
Mandel MA, Yanofsky MF. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell. 1995;7:1763–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zilberman D, Cao XF, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science. 2003;299:716–9.
Article
CAS
PubMed
Google Scholar
Jain M, Chevala VN, Garg R. Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing. J Exp Bot. 2014;65:5945–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi YJ, He XY, Wang XJ, Kohany O, Jurka J, Hannon GJ. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature. 2006;443:1008–12.
Article
PubMed
Google Scholar
Wood A, Shilatifard A. Post-translational modifications of histones by methylation. Adv Protein Chem. 2004;67:201–22.
Article
CAS
PubMed
Google Scholar
Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001;292:110–3.
Article
CAS
PubMed
Google Scholar
Luo C, Cai XT, Du J, Zhao TL, Wang PF, Zhao PX, et al. PARAQUAT TOLERANCE3 is an E3 ligase that switches off activated oxidative response by targeting histone-modifying PROTEIN METHYLTRANSFERASE4b. PLoS Genet. 2016;12:e1006332.
Article
PubMed
PubMed Central
Google Scholar
Risk JM, Laurie RE, Macknight RC, Day CL. FRIGIDA and related proteins have a conserved central domain and family specific N- and C- terminal regions that are functionally important. Plant Mol Biol. 2010;73:493–505.
Article
CAS
PubMed
Google Scholar
Deng X, Gu LF, Liu CY, Lu TC, Lu FL, Lu ZK, et al. Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proc Natl Acad Sci. 2010;107:19114–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vlachonasios KE, Thomashow MF, Triezenberg SJ. Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development and gene expression. Plant Cell. 2003;15:626–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sieberer T, Hauser MT, Seifert GJ, Luschnig C. PROPORZ1, a putative Arabidopsis transcriptional adaptor protein, mediates auxin and cytokinin signals in the control of cell proliferation. Curr Biol. 2003;13:837–42.
Article
CAS
PubMed
Google Scholar
Book AJ, Gladman NP, Lee SS, Scalf M, Smith LM, Vierstra RD. Affinity purification of the Arabidopsis 26S proteasome reveals a diverse array of plant proteolytic complexes. J Biol Chem. 2010;285:25554–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikeda K, Ito M, Nagasawa N, Kyozuka JY, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J. 2007;51:1030–40.
Article
CAS
PubMed
Google Scholar
Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan MW, et al. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell. 2013;25:3347–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fatimababy AS, Lin YL, Usharani R, Radjacommare R, Wang HT, Tsai HL, et al. Cross-species divergence of the major recognition pathways of ubiquitylated substrates for ubiquitin/26S proteasome-mediated proteolysis. FEBS. 2010;277:796–816.
Article
CAS
Google Scholar
Lin YL, Sung SC, Tsai HL, Yu T, Radjacommare R, Usharani R, et al. The defective proteasome but not substrate recognition function is responsible for the null phenotypes of the Arabidopsis proteasome subunit RPN10. Plant Cell. 2011;23:2754–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byrne ME, Groover AT, Fontana JR, Martienssen RA. Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development. 2003;130:3941–50.
Article
CAS
PubMed
Google Scholar
Bao X, Franks RG, Levin JZ, Liu Z. Repression of AGAMOUS by BELLRINGER in floral and inflorescence meristems. Plant Cell. 2004;16:1478–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregis V, Sessa A, Dorca-Fornell C, Kater MM. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J. 2009;60:626–37.
Article
CAS
PubMed
Google Scholar
Benstein RM, Ludewig K, Wulfert S, Wittek S, Gigolashvili T, Frerigmann H, et al. Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. Plant Cell. 2013;25:5011–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toujani W, Munoz-Bertomeu J, Flores-Tornero M, Tellez SR, Anoman AD, Alseekh S, et al. Functional characterization of the plastidial 3-phosphoglycerate dehydrogenase family in Arabidopsis. Plant Physiol. 2013;163:1164–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rius SP, Casati P, Iglesias AA, Gomez-Casati DF. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol. 2008;148:1655–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berardini TZ, Bollman K, Sun H, Poethig RS. Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40. Science. 2001;291:2405–7.
Article
CAS
PubMed
Google Scholar
Patel S, Rose A, Meulia T, Dixit R, Cyr RJ, Meier I. Arabidopsis WPP-domain proteins are developmentally associated with the nuclear envelope and promote cell division. Plant Cell. 2004;16:3260–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brkljacic J, Zhao Q, Meier I. WPP-domain proteins mimic the activity of the HSC70-1 chaperone in preventing mistargeting of RanGAP1-anchoring protein WIT1. Plant Physiol. 2009;151:142–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H. 2016 update of the PRIDE database and related tools. Nucleic Acids Res. 2016;44(Database issue):D447–56.
Article
PubMed
Google Scholar