Graham LK, Wilcox LW. The origin of alteration of generations in land plants: a focus on matrotrophy and hexose transport. Philo Trans R Soc Lond B Biol Sci. 2000;255:757–66.
Article
Google Scholar
Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, et al. Multigene phylogeny of choanozoa and the origin of animals. PLoS One. 2008;3:e2098.
Article
PubMed
PubMed Central
Google Scholar
Hill DRA, Rowan KS. The biliproteins of the Cryptophyceae. Phycologia. 1989;28:455–63.
Article
Google Scholar
McFadden GI, Gilson PR, Hill DRA. Goniomonas: rRNA sequences indicate that that this phagotrophic flagellate is a close relative to the host component of cryptomonads. Eur J Phycol. 1994;29:29–32.
Article
Google Scholar
Hoef-Emden K, Marin B, Melkonian M. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J Mol Evol. 2002;55:161–79.
Article
CAS
PubMed
Google Scholar
Deane JA, Hill DRA, Brett SJ, McFadden GI. Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J Phycol. 2002;38:1236–44.
Article
CAS
Google Scholar
von der Heyden S, Chao E, Cavalier-Smith T. Genetic diversity of goniomonads: an ancient divergence between marine and freshwater species. Eur J Phycol. 2004;39:343–50.
Article
CAS
Google Scholar
Hoef-Emden K. Molecular phylogeny of phycocyanin-containing cryptophytes: evolution of biliproteins and geographical distribution. J Phycol. 2008;44:985–93.
Article
PubMed
Google Scholar
Donaher N, Tanifuji G, Onodera NT, Malfatti SA, Chain PS, et al. The complete plastid genome sequence of the secondarily nonphotosynthetic alga Cryptomonas paramecium: reduction, compaction, and accelerated evolutionary rate. Genome Biol Evol. 2009;1:439–48.
Article
PubMed
PubMed Central
Google Scholar
Yabuki A, et al. Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista. Sci Rep. 2014;4:4641.
Article
PubMed
PubMed Central
Google Scholar
Cavalier-Smith T, Chao EE, Lewis R. Multiple origins of Heliozoa from flagellate ancestors: new cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Mol Phylogenet Evol. 2015;93:331–62.
Article
PubMed
Google Scholar
Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, Smirnov A, Mylnikov AP, Keeling PJ. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B. 2016;283:20152802.
Article
PubMed
PubMed Central
Google Scholar
Douglas SE, Murphy CA, Spencer DF, Gray MW. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature. 1991;350:148–51.
Article
CAS
PubMed
Google Scholar
McFadden GI. Second-hand chloroplasts: evolution of cryptomonad algae. In: Callow JA, editor. Advances in botanical research. London: Academic Press Limited; 1993. p. 189–230.
Google Scholar
Gray MW, Lang BF, Burger G. Mitochondria of protists. Ann Rev Genet. 2004;38:477–524.
Article
CAS
PubMed
Google Scholar
Smith DR. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Brief Funct Genomics. 2016;15:47–54.
CAS
PubMed
Google Scholar
Chen Z, Zhao N, Li S, Grover CE, Nie H, Wendel JF, Hua J. Plant mitochondrial genome evolution and cytoplasmic male sterility. Crit Rev Plant Sci. 2017;36:55–69.
Article
Google Scholar
Burger G, Gray MW, Forget L, Lang BF. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout Jakobid protists. Genome Biol Evol. 2013;5:418–38.
Article
PubMed
PubMed Central
Google Scholar
Burger G, Jackson CJ, Waller RF. Unusual mitochondrial genomes and genes. In: Bullerwell C, editor. Organelle genetics. New York: Springer; 2012. p. 41–77.
Chapter
Google Scholar
Hauth AM, Maier UG, Lang BF, Burger G. The Rhodomonas salina mitochondrial genome: bacteria-like operons, compact gene arrangement and complex repeat region. Nucleic Acids Res. 2005;33:4433–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim E, Lane CE, Curtis BA, et al. Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae). BMC Genomics. 2008;9:215–27.
Article
PubMed
PubMed Central
Google Scholar
Nishimura Y, Tanifuji G, Kamikawa R, Yabuki A, Hashimoto T, Inagaki Y. Mitochondrial genome of Palpitomonas bilix: derived genome structure and ancestral system for cytochrome c maturation. Genome Biol Evol. 2016;13:3090–8.
Article
Google Scholar
Smith DR, Arrigo KR, Alderkamp AC, Allen AE. Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of Phaeocystis algae. Mol Phylogenet Evol. 2014;71:30–40.
Article
Google Scholar
Kim JI, Moore CE, Archibald JM, Bhattacharya D, Yi G, Yoon HS, Shin W. Evolutionary dynamics of cryptophyte plastid genomes. Genome Biol Evol. 2017;9:1859–72.
Article
PubMed
PubMed Central
Google Scholar
Turmel M, Lemieux C, Burger G, Lang BF, Otis C, Plante I, Gray MW. The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor: two radically different evolutionary patterns within green algae. Plant Cell. 1999;11:1717–29.
CAS
PubMed
PubMed Central
Google Scholar
Turmel M, Otis C, Lemieux C. A deviant genetic code in the reduced mitochondrial genome of the picoplaktonic green alga Pycnococcus provasolii. J Mol Evol. 2010;70:203–14.
Article
CAS
PubMed
Google Scholar
Sánchez Puetra MV, Bachvaroff TR, Delwiche CF. The complete mitochondrial genome sequence of the haptophyte Emiliania huxleyi and its relation to heterokonts. DNA Res. 2004;11:1–10.
Article
Google Scholar
Hovde BT, Starkenburg SR, Hunsperger HM, Mercer LD, Deodato CR, Jha RK, et al. The mitochondrial and chloroplast genomes of the haptophyte Chrysochromulina tobin contain unique repeat structures and gene profiles. BMC Genomics. 2014;15:604. PMID:25034814
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Xue JY, Wang B, Li L, Qiu YL. The mitochondrial genomes of the early land plants Treubia lacunose and Anomodon rugelii: dynamic and conservative evolution. PLoS One. 2011;6:e25836.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farwagi A, Fučíková K, McManus HA. Phylogenetic patterns of gene rearrangements in four mitochondrial genomes from the green algal family Hydrodictyaceae (Sphaeropleales, Chlorophyceae). BMC Genomics. 2015;16:826.
Article
PubMed
PubMed Central
Google Scholar
Yang E, et al. Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biol Evol. 2015;7:2394–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ševčíková T, Zbránková Z, Klimeš V, Strnad H, Hroudová M, Vlček Č, Eliáš M. A comparative analysis of mitochondrial genomes in eustigmatophyte algae. Genome Biol Evol. 2016;8:705–22.
Article
PubMed
PubMed Central
Google Scholar
Tanifuji G, Archibald JM, Hashimoto T. Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics. Sci Rep. 2016;6:21016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paquin B, Laforest MJ, Lang BF. Double-hairpin elements in the mitochondrial DNA of Allomyces: evidence for mobility. Mol Biol Evol. 2000;17:1760–8.
Article
CAS
PubMed
Google Scholar
Bullerwell CE, Leigh J, Forget L, Lang BF. A comparison of three fission yeast mitochondrial genomes. Nucleic Acids Res. 2003;31:759–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nedelcu AM, Lee RW. Short repetitive sequences in green algal mitochondrial genomes: potential roles in mitochondrial genome evolution. Mol Biol Evol. 1998;15:690–701.
Article
CAS
PubMed
Google Scholar
Bartoszewski G, Katzir N, Harvey MJ. Organization of repetitive DNAs and the genomic regions carrying ribosomal RNA, cob, and atp9 genes in the cucurbit mitochondrial genomes. Theor Appl Genet. 2004;108:982–92.
Article
CAS
PubMed
Google Scholar
Beaudet D, et al. Mitochondrial genome rearrangements in Glomus species triggered by homologous recombination between distinct mtDNA haplotypes. Genome Biol Evol. 2013;5:1628–43.
Article
PubMed
PubMed Central
Google Scholar
Kamikawa R, Shiratori T, Ishida K, Miyashita H, Roger AJ. Group II intron-mediated trans-splicing in the gene-rich mitochondrial genome of an enigmatic eukaryote, Diphylleia rotans. Genome Biol Evol. 2016;8:458–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmer JD. Plastid chromosomes: structure and evolution. In: Bogorad L, Vasil IK, editors. Cell culture and somatic genetics of plant, vol. 7A. San Diego: Molecular Biology of Plastids, Academic Press; 1991. p. 5–53.
Google Scholar
Knox EB, Downie SR, Palmer JD. Chloroplast genome rearrangements and the evolution of giant lobelias from herbaceous ancestors. Mol Biol Evol. 1993;10:414–30.
CAS
Google Scholar
Kelchner SA, Wendel JF. Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr Genet. 1996;30:259–62.
Article
CAS
PubMed
Google Scholar
Kelchner SA. The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard. 2000;87:482–98.
Article
Google Scholar
Hoot SB, Palmer JD. Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera. J Mol Evol. 1994;38:274–81.
Article
CAS
PubMed
Google Scholar
Turmel M, Otis C, Lemieux C. The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants. Mol Biol Evol. 2002;19:24–38.
Article
CAS
PubMed
Google Scholar
Haberle RC, Fourcade HM, Boore JL, Jansen RK. Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol. 2008;66:350–61.
Article
CAS
PubMed
Google Scholar
Oudot-Le Secq M-P, Green BR. Complex repeat structures and novel features in the mitochondrial genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Gene. 2011;476:20–6.
Article
CAS
PubMed
Google Scholar
Nedelcu AM, Lee RW, Lemieux C, Gray MW, Burger G. The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome. Genome Res. 2000;10:819–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lunt DH, Whipple LE, Hyman BC. Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology. Mol Ecol. 1998;7:1441–55.
Article
CAS
PubMed
Google Scholar
Casane D, Dennebouy N, de Rochambeau H, Mounolou JC, Monnerot M. Nonneutral evolution of tandem repeats in the mitochondrial DNA control region of lagomorphs. Mol Biol Evol. 1997;14:779–89.
Article
CAS
PubMed
Google Scholar
Elorza A, et al. Nuclear SDH2-1 and SDH2-2 genes, encoding the iron-sulfur subunit of mitochondrial complex II in Arabidopsis, have distinct cell-specific expression patterns and promoter activities. Plant Physiol. 2004;136:4072–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bayley JP, Devilee P, Taschner PE. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency. BMC Med Genet. 2005;6:39.
Article
PubMed
PubMed Central
Google Scholar
Salomaki ED, Lane CE. Red algal mitochondrial genomes are more complete than previously reported. Genome Biol Evol. 2017;9:48–63.
CAS
PubMed
Google Scholar
Lang BF, Burger G, Okelly CJ, Cedergren R, Golding GB, et al. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997;387:493–7.
Article
CAS
PubMed
Google Scholar
Burger G, Gray MW, Lang BF. Mitochondrial genomes: anything goes. Trends Genet. 2003;19:709–16.
Article
CAS
PubMed
Google Scholar
Zimmerly S, Hausner G, Wu X. Phylogenetic relationships among group II intron ORFs. Nucleic Acids Res. 2001;29:1238–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oda K, Yamato K, Ohta E, Nakamura Y, et al. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol. 1992;223:1–7.
Article
CAS
PubMed
Google Scholar
Berks BC. The twin-arginine protein translocation pathway. Annu Rev Biochem. 2015;84:843–64.
Article
CAS
PubMed
Google Scholar
Bogsch EG, et al. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem. 1998;273:18003–6.
Article
CAS
PubMed
Google Scholar
Jacob Y, Seif E, Paquet P-O, Lang BF. Loss of the mRNA-like region in mitochondrial tmRNAs of jakobids. RNA. 2004;10:605–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burger G, Nedelcu AM. Mitochondrial genomes of algae. In: Bock R, Knoop V, editors. Genomics of chloroplasts and mitochondria (advances in photosynthesis and respiration). Dordrecht: Springer; 2012. p. 127–57.
Chapter
Google Scholar
Cavalier-Smith T. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryotic family tree. J Eukaryot Microbiol. 1999;46:347–66.
Article
CAS
PubMed
Google Scholar
Yoon HS, Hackett JD, Bhattacharya D. A single origin of the peridinin—and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci U S A. 2002a;99:11724–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoon HS, Hackett JD, Pinto G, Bhattacharya D. The single, ancient origin of chromist plastids. Proc Natl Acad Sci U S A. 2002b;99:15507–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keeling PJ. Diversity and evolutionary history of plastids and their hosts. Am J Bot. 2004;91:1481–93.
Article
PubMed
Google Scholar
Archibald JM, Keeling PJ. In: Saap J, editor. On the origin and evolution of plastids. Microbial phylogeny and evolution. New York: Oxford University Press; 2005. p. 238–60.
Google Scholar
Bhattacharya D, Yoon HS, Hackett JD. Photosynthetic eukaryotes unite: endosymbiosis connects the dots. BioEssays. 2004;26:50–60.
Article
PubMed
Google Scholar
Bhattacharya D, Archibald JM, Weber APM, Reyes-Prieto A. How do endosymbionts become organelles? Understanding early events in plastid evolution. BioEssays. 2007;29:1239–46.
Article
CAS
PubMed
Google Scholar
Archibald JM. The puzzle of plastid evolution. Curr Biol. 2009;19:R81–8.
Article
CAS
PubMed
Google Scholar
Kim JI, Yoon HS, Yi G, Kim HS, Yih W, Shin W. The plastid genome of the cryptomonad Teleaulax amphioxeia. PLoS One. 2015;10:e0129284.
Article
PubMed
PubMed Central
Google Scholar
Baurain D, Brinkmann H, Petersen J, Rodríguez-Ezpeleta N, Stechmann A, et al. Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol. 2010;27:1698–709.
Article
CAS
PubMed
Google Scholar
Burki F, Okamoto N, Pombert J-F, Keeling PJ. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci. 2012;279:2246–54.
Article
PubMed
PubMed Central
Google Scholar
Stiller JW, Schreiber J, Yue J, Guo H, Ding Q, et al. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun. 2014;5:5764.
Article
CAS
PubMed
PubMed Central
Google Scholar
Archibald JM. Genomic perspectives on the birth and spread of plastids. Proc Natl Acad Sci U S A. 2015;112:10147–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watanabe MM, Hiroki M. NIES-collection list of strains. 5th ed. Tsukuba: National Institute for Environmental Studies; 1997. p. 127.
Google Scholar
Jung J, Kim JI, Jeong Y-S, Yi G. A robust method for finding the automated best matched genes based on grouping similar fragments of large-scale references for genome assembly. Symmetry. 2017;9:192.
Article
Google Scholar
Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet PM. The genetic data environment: an expandable GUI for multiple sequence analysis. Comput Appl Biosci. 1994;10:671–5.
CAS
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25:1307–20.
Article
CAS
PubMed
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5.
Article
CAS
PubMed
PubMed Central
Google Scholar